A371131 Least number with exactly n distinct divisors of prime indices. Position of first appearance of n in A370820.
1, 2, 3, 7, 13, 53, 37, 311, 89, 151, 223, 2045, 281, 3241, 1163, 827, 659, 9037, 1069, 17611, 1511, 4211, 28181, 122119, 2423, 10627, 88483, 6997, 7561, 98965, 5443, 88099, 6473, 95603, 309073, 50543, 10271, 192709, 508051, 438979, 14323, 305107, 26203
Offset: 0
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 3: {2} 7: {4} 13: {6} 53: {16} 37: {12} 311: {64} 89: {24} 151: {36} 223: {48} 2045: {3,80} 281: {60} 3241: {4,90} 1163: {192} 827: {144} 659: {120} 9037: {4,210} 1069: {180} 17611: {5,252}
Crossrefs
Programs
-
Mathematica
rnnm[q_]:=Max@@Select[Range[Min@@q,Max@@q],SubsetQ[q,Range[#]]&]; posfirsts[q_]:=Table[Position[q,n][[1,1]],{n,Min@@q,rnnm[q]}]; posfirsts[Table[Length[Union @@ Divisors/@PrimePi/@First/@If[n==1, {},FactorInteger[n]]],{n,1000}]]
-
PARI
f(n) = my(list=List(), f=factor(n)); for (i=1, #f~, fordiv(primepi(f[i,1]), d, listput(list, d))); #Set(list); \\ A370820 a(n) = my(k=1); while (f(k) != n, k++); k; \\ Michel Marcus, May 02 2024
Comments