cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A370820 Number of positive integers that are a divisor of some prime index of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 4, 3, 3, 1, 2, 2, 4, 2, 3, 2, 3, 2, 2, 4, 2, 3, 4, 3, 2, 1, 3, 2, 4, 2, 6, 4, 4, 2, 2, 3, 4, 2, 3, 3, 4, 2, 3, 2, 3, 4, 5, 2, 3, 3, 4, 4, 2, 3, 6, 2, 3, 1, 4, 3, 2, 2, 4, 4, 6, 2, 4, 6, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 3, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Mar 15 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
This sequence contains all nonnegative integers. In particular, a(prime(n)!) = n.

Examples

			2045 has prime indices {3,80} with combined divisors {1,2,3,4,5,8,10,16,20,40,80}, so a(2045) = 11. In fact, 2045 is the least number with this property.
		

Crossrefs

a(prime(n)) = A000005(n).
Positions of ones are A000079 except for 1.
a(n!) = A000720(n).
a(prime(n)!) = a(prime(A005179(n))) = n.
Counting prime factors instead of divisors gives A303975.
Positions of 2's are A371127.
Position of first appearance of n is A371131(n), sorted version A371181.
A001221 counts distinct prime factors.
A003963 gives product of prime indices.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Union@@Divisors/@PrimePi/@First/@If[n==1,{},FactorInteger[n]]],{n,100}]
  • PARI
    a(n) = my(list=List(), f=factor(n)); for (i=1, #f~, fordiv(primepi(f[i,1]), d, listput(list, d))); #Set(list); \\ Michel Marcus, May 02 2024

A370348 Numbers k such that there are fewer divisors of prime indices of k than there are prime indices of k.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 32, 36, 40, 44, 48, 50, 54, 56, 60, 64, 68, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 124, 125, 126, 128, 132, 135, 136, 144, 150, 160, 162, 164, 168, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208, 216, 220, 224, 225, 236, 240, 242, 243, 248, 250, 252, 256
Offset: 1

Views

Author

Robert Israel, Feb 15 2024

Keywords

Comments

No multiple of a term is a term of A368110.

Examples

			a(5) = 18 is a term because the prime indices of 18 = 2 * 3^2 are 1,2,2, and there are 3 of these but only 2 divisors of prime indices, namely 1 and 2.
		

Crossrefs

The LHS is A370820, firsts A371131.
The version for equality is A370802, counted by A371130, strict A371128.
For submultisets instead of parts on the RHS we get A371167.
The opposite version is A371168, counted by A371173.
The weak version is A371169.
The complement is A371170.
Partitions of this type are counted by A371171.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, indices A112798, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Maple
    filter:= proc(n) uses numtheory; local F,D,t;
       F:= map(t -> [pi(t[1]),t[2]], ifactors(n)[2]);
       D:= `union`(seq(divisors(t[1]), t = F));
       nops(D) < add(t[2], t = F)
    end proc:
    select(filter, [$1..300]);
  • Mathematica
    filter[n_] := Module[{F, d},
        F = {PrimePi[#[[1]]], #[[2]]}& /@ FactorInteger[n];
        d = Union[Flatten[Divisors /@ F[[All, 1]]]];
        Length[d] < Total[F[[All, 2]]]];
    Select[Range[300], filter] (* Jean-François Alcover, Mar 08 2024, after Maple code *)

A371288 Numbers whose distinct prime indices form the set of divisors of some positive integer.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 32, 34, 36, 40, 42, 44, 48, 50, 54, 62, 64, 68, 72, 80, 82, 84, 88, 96, 100, 108, 118, 124, 126, 128, 134, 136, 144, 160, 162, 164, 166, 168, 176, 192, 200, 216, 218, 230, 236, 242, 248, 250, 252, 254, 256, 268, 272, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 22 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 694782 are {1,2,2,5,5,5,10} with distinct elements {1,2,5,10}, which form the set of divisors of 10, so 694782 is in the sequence.
The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   34: {1,7}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   48: {1,1,1,1,2}
		

Crossrefs

The squarefree case is A371283, unsorted version A275700.
Partitions of this type are counted by A371284, strict A054973.
Products of squarefree terms are A371286, unsorted version A371285.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, indices A112798, length A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Union[prix[#]]==Divisors[Max@@prix[#]]&]

A371283 Heinz numbers of sets of divisors of positive integers. Numbers whose prime indices form the set of divisors of some positive integer.

Original entry on oeis.org

2, 6, 10, 22, 34, 42, 62, 82, 118, 134, 166, 218, 230, 254, 314, 358, 382, 390, 422, 482, 554, 566, 662, 706, 734, 798, 802, 862, 922, 1018, 1094, 1126, 1174, 1198, 1234, 1418, 1478, 1546, 1594, 1718, 1754, 1838, 1914, 1934, 1982, 2062, 2126, 2134, 2174, 2306
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2024

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     2: {1}
     6: {1,2}
    10: {1,3}
    22: {1,5}
    34: {1,7}
    42: {1,2,4}
    62: {1,11}
    82: {1,13}
   118: {1,17}
   134: {1,19}
   166: {1,23}
   218: {1,29}
   230: {1,3,9}
   254: {1,31}
   314: {1,37}
   358: {1,41}
   382: {1,43}
   390: {1,2,3,6}
		

Crossrefs

Partitions of this type are counted by A054973.
The unsorted version is A275700.
These numbers have products A371286, unsorted version A371285.
Squarefree case of A371288, counted by A371284.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],SameQ[prix[#],Divisors[Last[prix[#]]]]&]

A371181 Sorted list of positions of first appearances in the sequence A370820, which counts distinct divisors of prime indices.

Original entry on oeis.org

1, 2, 3, 7, 13, 37, 53, 89, 151, 223, 281, 311, 659, 827, 1069, 1163, 1511, 2045, 2423, 3241, 4211, 5443, 6473, 6997, 7561, 9037, 10271, 10627, 14323, 17611, 26203, 28181, 33613, 50543, 88099, 88483, 95603, 98965, 122119, 168281, 192709, 305107, 309073, 420167
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
       1: {}
       2: {1}
       3: {2}
       7: {4}
      13: {6}
      37: {12}
      53: {16}
      89: {24}
     151: {36}
     223: {48}
     281: {60}
     311: {64}
     659: {120}
     827: {144}
    1069: {180}
    1163: {192}
    1511: {240}
    2045: {3,80}
    2423: {360}
    3241: {4,90}
    4211: {576}
    5443: {720}
    6473: {840}
    6997: {900}
    7561: {960}
    9037: {4,210}
		

Crossrefs

Counting prime factors instead of divisors (see A303975) gives A062447(>0).
The unsorted version is A371131.
A000005 counts divisors.
A001221 counts distinct prime factors.
A003963 gives product of prime indices.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    rnnm[q_]:=Max@@Select[Range[Min@@q,Max@@q],SubsetQ[q,Range[#]]&];
    posfirsts[q_]:=Table[Position[q,n][[1,1]],{n,Min@@q,rnnm[q]}];
    posfirsts[Table[Length[Union @@ Divisors/@PrimePi/@First/@If[n==1,{},FactorInteger[n]]],{n,1000}]]//Sort
Showing 1-5 of 5 results.