A371201 a(n) = Sum_{k=prime(n)..prime(n+1)-1} k, with a(0) = 1.
1, 2, 7, 11, 34, 23, 58, 35, 82, 153, 59, 201, 154, 83, 178, 297, 333, 119, 381, 274, 143, 453, 322, 513, 740, 394, 203, 418, 215, 442, 1673, 514, 801, 275, 1435, 299, 921, 957, 658, 1017, 1053, 359, 1855, 383, 778, 395, 2454, 2598, 898, 455, 922, 1413, 479, 2455, 1521, 1557, 1593
Offset: 0
Examples
a(0) = 1. a(1) = 2. a(2) = 3 + 4 = 7. a(3) = 5 + 6 = 11. a(4) = 7 + 8 + 9 + 10 = 34. a(5) = 11 + 12 = 23. a(6) = 13 + 14 + 15 + 16 = 58. a(7) = 17 + 18 = 35. The natural numbers are summed in groups where each prime begins a new group, primes v v v v 1 2 3 4 5 6 7 8 9 10 ... \-/ \-/ \-----/ \-----/ \-------------/ a(n) = 1 2 7 11 34 n = 0 1 2 3 4
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
ithprime(0):=1: a:= n-> ((j, k)-> (k-1+j)*(k-j)/2)(map(ithprime, [n, n+1])[]): seq(a(n), n=0..56); # Alois P. Heinz, Mar 16 2024
-
Mathematica
Join[{1},Table[Prime[n]+(Prime[n+1]+Prime[n])*(Prime[n+1]-Prime[n]-1)/2,{n,56}]] (* James C. McMahon, Apr 20 2024 *)
-
PARI
first(n) = { my(res = primes(n), t = 0); for(i = 1, n, res[i] = binomial(res[i],2) - t; t+=res[i]; ); res } \\ David A. Corneth, Mar 16 2024
-
Python
from sympy import nextprime, prime def A371201(n): if n == 0: return 1 q = nextprime(p:=prime(n)) return (q-p)*(p+q-1)>>1 # Chai Wah Wu, Jun 01 2024
Formula
For n > 0, a(n) = A138383(n) - (prime(n+1) - prime(n)).
a(n) = binomial(prime(n+1), 2) - Sum_{k=0..n-1} a(k). - David A. Corneth, Mar 15 2024
a(n) = prime(n) + A054265(n), for n >= 1. - Michel Marcus, Mar 15 2024
a(n) = (prime(n+1)-prime(n))*(prime(n+1)+prime(n)-1)/2 for n>=1. - Chai Wah Wu, Jun 01 2024
Extensions
More terms from Michel Marcus, Mar 15 2024
Comments