A371417 Triangle read by rows: T(n,k) is the number of complete compositions of n with k parts.
1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 3, 4, 1, 0, 0, 0, 6, 6, 5, 1, 0, 0, 0, 0, 16, 10, 6, 1, 0, 0, 0, 0, 12, 30, 15, 7, 1, 0, 0, 0, 0, 12, 35, 50, 21, 8, 1, 0, 0, 0, 0, 24, 50, 75, 77, 28, 9, 1, 0, 0, 0, 0, 0, 90, 126, 140, 112, 36, 10, 1
Offset: 0
Examples
The triangle begins: k=0 1 2 3 4 5 6 7 8 9 10 n=0: 1; n=1: 0, 1; n=2: 0, 0, 1; n=3: 0, 0, 2, 1; n=4: 0, 0, 0, 3, 1; n=5: 0, 0, 0, 3, 4, 1; n=6: 0, 0, 0, 6, 6, 5, 1; n=7: 0, 0, 0, 0, 16, 10, 6, 1; n=8: 0, 0, 0, 0, 12, 30, 15, 7, 1; n=9: 0, 0, 0, 0, 12, 35, 50, 21, 8, 1; n=10: 0, 0, 0, 0, 24, 50, 75, 77, 28, 9, 1; ... For n = 5 there are a total of 8 complete compositions: T(5,3) = 3: (221), (212), (122) T(5,4) = 4: (2111), (1211), (1121), (1112) T(5,5) = 1: (11111)
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(i=0, t!, 0), `if`(i<1 or n (p-> seq(coeff(p, x, i), i=0..n))(add(b(n, i, 0), i=0..n)): seq(T(n), n=0..12); # Alois P. Heinz, Apr 03 2024
-
PARI
G(N)={ my(z='z+O('z^N)); Vec(sum(i=1,N,z^(i*(i+1)/2)*t^i*prod(j=1,i,sum(k=0,N, (z^(j*k)*t^k)/(k+1)!))))} my(v=G(10)); for(n=0, #v, if(n<1,print([1]), my(p=v[n], r=vector(n+1)); for(k=0, n, r[k+1] =k!*polcoeff(p, k)); print(r)))
Formula
T(n,k) = k!*[z^n*t^k] Sum_{i>0} z^(i*(i+1)/2)*t^i * Product_{j=1..i} Sum_{k>=0} (z^(j*k)*t^k)/(k+1)!.
Comments