A371460 Binomial transform of A355409.
1, 2, 10, 80, 838, 10952, 171910, 3148280, 65890198, 1551389192, 40586247910, 1167964662680, 36666464437558, 1247011549249832, 45672691012357510, 1792280373542404280, 75021202465129000918, 3336499249170658956872, 157116438405334017308710, 7809681380575733223237080, 408621675981135189773468278
Offset: 0
Keywords
Crossrefs
Cf. A355409.
Programs
-
SageMath
def a(n): if n==0: return 1 else: return (-1)^n + sum([(1-(-2)^j)*binomial(n,j)*a(n-j) for j in [1,..,n]]) list(a(n) for n in [0,..,20])
-
SageMath
f= e^(x)/(1 + e^(2*x) - e^(3*x)) print([(diff(f,x,i)).subs(x=0) for i in [0,..,20]])
Formula
a(0) = 1, a(n) = (-1)^n + Sum_{j=1..n} (1-(-2)^j)*binomial(n,j)*a(n-j) for n > 0.
a(0) = 1, a(n) = 1 + Sum_{j=1..n} (3^j-2^j)*binomial(n,j)*a(n-j) for n > 0.
E.g.f.: exp(x)/(1 + exp(2*x) - exp(3*x)).