cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371460 Binomial transform of A355409.

Original entry on oeis.org

1, 2, 10, 80, 838, 10952, 171910, 3148280, 65890198, 1551389192, 40586247910, 1167964662680, 36666464437558, 1247011549249832, 45672691012357510, 1792280373542404280, 75021202465129000918, 3336499249170658956872, 157116438405334017308710, 7809681380575733223237080, 408621675981135189773468278
Offset: 0

Views

Author

Prabha Sivaramannair, Mar 24 2024

Keywords

Crossrefs

Cf. A355409.

Programs

  • SageMath
    def a(n):
        if n==0:
            return 1
        else:
            return (-1)^n + sum([(1-(-2)^j)*binomial(n,j)*a(n-j) for j in [1,..,n]])
    list(a(n) for n in [0,..,20])
    
  • SageMath
    f= e^(x)/(1 + e^(2*x) - e^(3*x))
    print([(diff(f,x,i)).subs(x=0) for i in [0,..,20]])

Formula

a(0) = 1, a(n) = (-1)^n + Sum_{j=1..n} (1-(-2)^j)*binomial(n,j)*a(n-j) for n > 0.
a(0) = 1, a(n) = 1 + Sum_{j=1..n} (3^j-2^j)*binomial(n,j)*a(n-j) for n > 0.
E.g.f.: exp(x)/(1 + exp(2*x) - exp(3*x)).