A371486
G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^4.
Original entry on oeis.org
1, 4, 30, 260, 2465, 24796, 260008, 2811216, 31117240, 350890260, 4016744586, 46556054072, 545273713228, 6443442857024, 76727957438650, 919796418086076, 11091249210406816, 134439965189940176, 1637160457090585016, 20019920157735604796, 245733987135102838131
Offset: 0
-
a(n) = sum(k=0, n, binomial(n-1, n-k)*binomial(5*k+3, k)/(k+1));
A371517
G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^4.
Original entry on oeis.org
1, 4, 26, 188, 1459, 11892, 100444, 871528, 7722557, 69590628, 635807180, 5876094308, 54836925779, 516029817620, 4891147100886, 46653935716492, 447490869463145, 4313492172957396, 41763413498670702, 405968522259130636, 3960526930400038404
Offset: 0
-
a(n) = 4*sum(k=0, n, binomial(n-1, n-k)*binomial(4*k+3, k)/(3*k+4));
A371516
G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^3.
Original entry on oeis.org
1, 3, 15, 82, 477, 2901, 18235, 117555, 773085, 5166478, 34987170, 239570655, 1655933060, 11538839130, 80971109712, 571702698185, 4058556404958, 28951715755830, 207424064434502, 1491898838023884, 10768487956456506, 77977009814421534, 566310026687320290
Offset: 0
-
a(n) = 3*sum(k=0, n, binomial(n-1, n-k)*binomial(3*k+2, k)/(2*k+3));
A371519
G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^5.
Original entry on oeis.org
1, 5, 45, 470, 5375, 65231, 825225, 10764185, 143739440, 1955340360, 27001732972, 377530388235, 5333865386885, 76031188364860, 1092117166466660, 15792298241897649, 229704197116753825, 3358528175751886765, 49333470827844265285, 727680248026484478405
Offset: 0
-
a(n) = sum(k=0, n, binomial(n-1, n-k)*binomial(6*k+4, k)/(k+1));
A371518
G.f. A(x) satisfies A(x) = (1 + x*A(x)^2 / (1-x))^2.
Original entry on oeis.org
1, 2, 11, 72, 525, 4104, 33647, 285526, 2486809, 22103726, 199697284, 1828472914, 16929944932, 158246198836, 1491210732346, 14151603542612, 135130396860130, 1297381593071890, 12516650939119421, 121281286192026308, 1179769340479567499
Offset: 0
-
a(n) = 2*sum(k=0, n, binomial(n-1, n-k)*binomial(4*k+1, k)/(3*k+2));
A382885
G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x) * A(x) )^3.
Original entry on oeis.org
1, 3, 18, 121, 900, 7110, 58598, 498153, 4336533, 38463732, 346368351, 3158325168, 29102914959, 270582713670, 2535191045652, 23913087584045, 226892934532149, 2164080724942155, 20737076963936828, 199542537271568802, 1927347504059464995, 18679645863925666721
Offset: 0
-
a(n, r=3, s=1, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
Showing 1-6 of 6 results.