A378238
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+r+k,n)/(3*n+r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 14, 0, 1, 6, 32, 134, 0, 1, 8, 54, 324, 1482, 0, 1, 10, 80, 578, 3696, 17818, 0, 1, 12, 110, 904, 6810, 45316, 226214, 0, 1, 14, 144, 1310, 11008, 85278, 583152, 2984206, 0, 1, 16, 182, 1804, 16490, 140936, 1113854, 7769348, 40503890, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 14, 32, 54, 80, 110, 144, ...
0, 134, 324, 578, 904, 1310, 1804, ...
0, 1482, 3696, 6810, 11008, 16490, 23472, ...
0, 17818, 45316, 85278, 140936, 216002, 314700, ...
0, 226214, 583152, 1113854, 1870352, 2914790, 4320608, ...
T(n,n) gives 1/4 *
A370102(n) for n > 0.
-
T(n, k, t=3, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A371676
G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x)^(1/2))^2.
Original entry on oeis.org
1, 4, 40, 524, 7824, 126228, 2143544, 37750812, 683194912, 12628104740, 237388091208, 4524456276524, 87228274533040, 1698091537435444, 33332913873239640, 659038408936005692, 13112372856351746112, 262338658739430857796, 5274545338183090647656
Offset: 0
-
a(n, r=2, t=4, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
A371678
G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x)^(1/2))^2.
Original entry on oeis.org
1, 4, 56, 1068, 23504, 561972, 14183880, 371911132, 10031990560, 276589937892, 7759696110808, 220805824681740, 6357540660485616, 184876232243020564, 5422016433851400552, 160187931368799105468, 4763038761416835095616, 142426926824923660491716
Offset: 0
-
a(n, r=2, t=6, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
A371677
G.f. satisfies A(x) = 1 + x * A(x)^(5/2) * (1 + A(x)^(1/2))^2.
Original entry on oeis.org
1, 4, 48, 772, 14256, 285380, 6023552, 131991940, 2974096544, 68475379204, 1603913377040, 38099316926340, 915619571011024, 22222175033464260, 543894269096547296, 13409307961403740420, 332707806061304185408, 8301493488646359256580
Offset: 0
-
a(n, r=2, t=5, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
A379282
G.f. A(x) satisfies A(x) = 1/( (1 - x*A(x)^2) * (1 - x*A(x)) )^2.
Original entry on oeis.org
1, 4, 34, 376, 4743, 64710, 929906, 13865206, 212509079, 3327383632, 52994140217, 855842582128, 13982509284464, 230686414552016, 3837897905208588, 64314848237403878, 1084624929809399857, 18393856772155371200, 313487249756740510907, 5366521088581773011788
Offset: 0
-
a(n) = 2*sum(k=0, n, binomial(2*n+3*k+2, k)*binomial(3*n+k+1, n-k)/(2*n+3*k+2));
A379244
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^3)/(1 - x*A(x)) )^2.
Original entry on oeis.org
1, 4, 40, 540, 8400, 141876, 2528760, 46815116, 891483808, 17350187364, 343578992328, 6900588813564, 140230648164720, 2878066866407316, 59571280942854808, 1242093725341221996, 26064579113472078144, 550041399791036747460, 11665771061882347813224, 248527169321049466503132
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+4*k+2, k)*binomial(3*n+3*k+1, n-k)/(n+2*k+1));
A379279
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^2) * (1 + x*A(x)) )^2.
Original entry on oeis.org
1, 4, 30, 288, 3125, 36490, 447478, 5683186, 74105002, 986302778, 13344661479, 182998935930, 2537838036761, 35530970858236, 501523116910044, 7129275916213606, 101973703002773268, 1466574750062589956, 21194869324964207133, 307642575576365729486, 4482940969372057898247
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+2*k+2, k)*binomial(2*n+2*k+2, n-k)/(n+k+1));
A371679
G.f. satisfies A(x) = ( 1 + x * A(x)^(3/2) * (1 + A(x)) )^2.
Original entry on oeis.org
1, 4, 36, 424, 5696, 82720, 1264816, 20060512, 326990528, 5444291968, 92193926528, 1582961928448, 27493991536384, 482203526685696, 8527881803412224, 151909590806619648, 2723133151505640448, 49087220319316809728, 889230405958421051392
Offset: 0
-
a(n, r=2, t=3, u=2) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
Showing 1-8 of 8 results.