cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371713 Expansion of g.f. A(x) satisfying A(x)^2 = A( A(x)*(x + A(x)^2) ).

Original entry on oeis.org

1, 1, 3, 10, 39, 161, 698, 3126, 14361, 67287, 320319, 1544894, 7532756, 37070678, 183892128, 918539002, 4615979653, 23321497085, 118391352149, 603585987830, 3089089467145, 15864868600157, 81737410659710, 422342729686590, 2188088882282654, 11363944086758244, 59152933495794684
Offset: 1

Views

Author

Paul D. Hanna, Apr 05 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 161*x^6 + 698*x^7 + 3126*x^8 + 14361*x^9 + 67287*x^10 + 320319*x^11 + 1544894*x^12 + ...
where A(x)^2 = A( A(x)*(x + A(x)^2) ).
RELATED SERIES.
(1) A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 26*x^5 + 107*x^6 + 460*x^7 + 2052*x^8 + 9394*x^9 + 43903*x^10 + 208570*x^11 + 1004263*x^12 + ...
(2) A(x)*(x + A(x)^2) = x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 88*x^6 + 374*x^7 + 1652*x^8 + 7512*x^9 + 34920*x^10 + 165198*x^11 + 792700*x^12 + ...
(3) Let R(x) be the series reversion of A(x), R(A(x)) = x, then
R(x) = x - x^2 - x^3 - x^5 - x^9 - x^17 - x^33 - x^65 + ... + -x^(2^n+1) + ...
and R(x) = R(x^2)/x - x^2.
SPECIFIC VALUES.
A(1/6) = 0.2367013365733826841498068726305704943941...
A(1/7) = 0.1823951399847440022737563157206822905959...
A(1/8) = 0.1515149787834965771672802816841610180120...
A(1/9) = 0.1303567976332909027691102900878848253626...
A(1/6)^2 = A(t) at t = A(1/6)*(1/6 + A(1/6)^2) = 0.05271201227864865...
A(1/7)^2 = A(t) at t = A(1/7)*(1/7 + A(1/7)^2) = 0.03212436773155026...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = x + Sum[A[x]^(2^k + 1), {k, 0, Log[nmax]/Log[2]}] + O[x]^(nmax + 1) // Normal, nmax + 1]; Rest[CoefficientList[A[x], x]] (* Vaclav Kotesovec, Apr 05 2024 *)
  • PARI
    /* G.f. Series_Reversion(x - x*Sum_{n>=0} x^(2^n)) */
    {a(n) = my(A = serreverse(x - x*sum(k=0,#binary(n), x^(2^k)) +x*O(x^n)));  polcoeff(A,n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=[1],F); for(i=1,n, A=concat(A,0); F=x*Ser(A);
    A[#A] = -polcoeff( F^2 - subst(F,x, F*(x + F^2)), #A+1) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*A(x) + A(x)^3 ).
(2) A(x)^4 = A( x*A(x)^3 + A(x)^5 + A(x)^6 ).
(3) A(x)^8 = A( x*A(x)^7 + A(x)^9 + A(x)^10 + A(x)^12 ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1) + Sum_{k=0..n-1} A(x)^(2^n+2^k) ) for n > 0.
(5) A(x) = x + Sum_{n>=0} A(x)^(2^n+1).
(6) A(x) = Series_Reversion(x - x*Sum_{n>=0} x^(2^n) ).
a(n) ~ c * d^n / n^(3/2), where d = 5.51142100999137014688261137378225123402050823381269982231021216596989145... and c = 0.07924552169373639393012621342284829291839319195254975892205166214809... - Vaclav Kotesovec, Apr 05 2024
The radius of convergence r = 0.1814414101530... = 1/d (d is given above) and A(r) satisfy: 1 = Sum_{n>=0} (2^n+1) * A(r)^(2^n) and r = A(r) - Sum_{n>=0} A(r)^(2^n+1), where A(r) = 0.319865507392391473797021103685180915354570766210154873070... - Paul D. Hanna, Apr 05 2024
c = sqrt(r) / sqrt(2*Pi * Sum_{k>=0} 2^k * (1 + 2^k) * A(r)^(2^k - 1)). - Vaclav Kotesovec, Apr 05 2024