A372530
Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x)/(1 - A(x)) ).
Original entry on oeis.org
1, 1, 3, 9, 33, 125, 501, 2065, 8739, 37685, 165107, 732681, 3286679, 14878885, 67889851, 311896993, 1441536321, 6698017445, 31269529601, 146601334841, 689945263873, 3258334336349, 15436401872405, 73341269533009, 349381321611505, 1668434132560765, 7985390073708765
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 9*x^4 + 33*x^5 + 125*x^6 + 501*x^7 + 2065*x^8 + 8739*x^9 + 37685*x^10 + 165107*x^11 + 732681*x^12 + ...
where A( x*A(x)/(1 - A(x)) ) = A(x)^2.
RELATED SERIES.
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x * Product_{n>=0} (1 - x^(2^n)) = x - x^2 - x^3 + x^4 - x^5 + x^6 + x^7 - x^8 - x^9 + x^10 + x^11 - x^12 + x^13 - x^14 - x^15 + x^16 + ... + (-1)^A010060(n-1) * x^n + ...
thus,
x = A(x) * (1 - A(x)) * (1 - A(x)^2) * (1 - A(x)^4) * (1 - A(x)^8) * (1 - A(x)^16) * ... * (1 - A(x)^(2^n)) * ...
SPECIFIC VALUES.
A(t) = 1/3 at t = (1/3) * Product_{n>=0} (1 - 1/3^(2^n)) = 0.195062471888103139123433255203480726664398592...
A(t) = 1/4 at t = (1/4) * Product_{n>=0} (1 - 1/4^(2^n)) = 0.175091932719784804433277263483089433821043251...
A(1/6) = 0.2285942310240955503097133963953487564542629539800372181...
A(1/7) = 0.1803372891149269875688065840927292319030238580575714990...
A(1/8) = 0.1506715662175837437127190414569072051853697889895576799...
A(1/6)^2 = A(t) at t = (1/6)*A(1/6)/(1 - A(1/6)) = 0.0493891023845...
A(1/7)^2 = A(t) at t = (1/7)*A(1/7)/(1 - A(1/7)) = 0.0314305744685...
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0); F=Ser(A);
A[#A] = polcoeff( subst(F,x, x*F/(1 - F) ) - F^2, #A) ); H=A; A[n+1]}
for(n=1,30, print1(a(n),", "))
A371716
Expansion of g.f. A(x) satisfies A( x*A(x)^3 + x*A(x)^4 ) = A(x)^4.
Original entry on oeis.org
1, 1, 1, 1, 2, 7, 22, 57, 131, 298, 738, 2003, 5600, 15380, 41224, 109769, 296010, 813333, 2261818, 6307070, 17560050, 48877852, 136457322, 382803675, 1078562370, 3047295816, 8623046992, 24432992884, 69345396556, 197211214852, 561975160288, 1604186098089, 4585779820379
Offset: 1
G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 7*x^6 + 22*x^7 + 57*x^8 + 131*x^9 + 298*x^10 + 738*x^11 + 2003*x^12 + 5600*x^13 + 15380*x^14 + ...
where A( x*A(x)^3*(1 + A(x)) ) = A(x)^4.
RELATED SERIES.
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) = x/((1+x)*(1+x^4)*(1+x^16)*(1+x^64)*(1+x^256)*(1+x^1024)*...) = x - x^2 + x^3 - x^4 + x^9 - x^10 + x^11 - x^12 + x^33 - x^34 + ...
We can show that g.f. A(x) = A( x*A(x)^3*(1 + A(x)) )^(1/4) satisfies
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(4^n))
by substituting x*A(x)^3*(1 + A(x)) for x in (4) to obtain
A(x)^4 = x * A(x)^3*(1 + A(x)) * Product_{n>=1} (1 + A(x)^(4^n))
which is equivalent to formula (4).
SPECIFIC VALUES.
A(1/3) = 0.6209428791888803994421374991623399343094...
A(1/4) = 0.3392462304609640143453810140211726768116...
A(1/5) = 0.2512464727722296135954631316870173555867...
A(t) = 1/2 and A(t*3/16) = 1/16 at t = 0.31372070319804379323613829910755157...
A(t) = 1/3 and A(t*4/81) = 1/81 at t = 0.24695121377537689193140239461709572...
A(t) = 1/4 and A(t*5/256) = 1/256 at t = 0.199221789836883544932674834867379...
-
/* Using series reversion of x/Product_{n>=0} (1 + x^(4^n)) */
{a(n) = my(A); A = serreverse( x/prod(k=0, ceil(log(n)/log(4)), (1 + x^(4^k) +x*O(x^n)) ) ); polcoeff(A, n)}
for(n=1, 35, print1(a(n), ", "))
-
/* Using A(x)^4 = A( x*A(x)^3 + x*A(x)^4 ) */
{a(n) = my(A=[1], F); for(i=1, n, A = concat(A, 0); F = x*Ser(A);
A[#A] = polcoeff( subst(F, x, x*F^3 + x*F^4 ) - F^4, #A+3) ); A[n]}
for(n=1, 35, print1(a(n), ", "))
A372578
Expansion of g.f. A(x) satisfying A( x*A(x) + 2*A(x)^3 ) = A(x)^2.
Original entry on oeis.org
1, 2, 10, 60, 406, 2940, 22304, 174960, 1407582, 11550396, 96299472, 813433712, 6946442776, 59872428672, 520174647424, 4550665293920, 40052871669422, 354421196057404, 3151211548631856, 28137903707808048, 252219507331523688, 2268719274696321856, 20472066335198022080, 185268984285773695200
Offset: 1
G.f.: A(x) = x + 2*x^2 + 10*x^3 + 60*x^4 + 406*x^5 + 2940*x^6 + 22304*x^7 + 174960*x^8 + 1407582*x^9 + 11550396*x^10 + 96299472*x^11 + 813433712*x^12 + ...
where A( x*A(x) + 2*A(x)^3 ) = A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 24*x^4 + 160*x^5 + 1152*x^6 + 8704*x^7 + 68088*x^8 + 546656*x^9 + 4478720*x^10 + 37294080*x^11 + ...
A(x)^3 = x^3 + 6*x^4 + 42*x^5 + 308*x^6 + 2358*x^7 + 18612*x^8 + 150424*x^9 + 1238688*x^10 + 10355982*x^11 + 87672468*x^12 + ...
The series reversion R(x) of A(x), R(A(x)) = x, begins:
R(x) = x - 2*x^2 - 2*x^3 - 2*x^5 - 2*x^9 - 2*x^17 - 2*x^33 - 2*x^65 - 2*x^129 - 2*x^257 - 2*x^513 + ... + -2*x^(2^n+1) + ...
SPECIFIC VALUES.
A(1/10) = 0.1580645870348513671680526916072548213169829162556439...
A(1/11) = 0.1278454819475039498675733418966788971517121949516108...
A(1/12) = 0.1104694875320629136831876267359845627848091250498995...
-
{a(n) = my(A=serreverse(x - 2*x*sum(m=0,#binary(n),x^(2^m) +x*O(x^n)))); polcoeff(A,n)}
for(n=1, 30, print1(a(n), ", "))
-
{a(n) = my(A=[0,1]); for(i=1, n, A = concat(A,0); F=Ser(A); A[#A] = polcoeff( subst(F,x, x*F + 2*F^3) - F^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A372526
Expansion of g.f. A(x) satisfying A( x*A(x)^2 + A(x)^4 ) = A(x)^3.
Original entry on oeis.org
1, 1, 2, 6, 20, 70, 256, 969, 3762, 14895, 59916, 244179, 1006026, 4183396, 17534888, 74007851, 314256048, 1341575769, 5754629794, 24789907450, 107202369386, 465209278326, 2025212712660, 8842042378050, 38707067608872, 169860383434800, 747096961093560, 3292855742992644
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 70*x^6 + 256*x^7 + 969*x^8 + 3762*x^9 + 14895*x^10 + 59916*x^11 + 244179*x^12 + ...
where A( x*A(x)^2 + A(x)^4 ) = A(x)^3.
RELATED SERIES.
(1) A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 31*x^6 + 114*x^7 + 432*x^8 + 1676*x^9 + 6633*x^10 + 26676*x^11 + 108696*x^12 + ...
(2) x*A(x)^2 + A(x)^4 = x^3 + 3*x^4 + 9*x^5 + 30*x^6 + 108*x^7 + 405*x^8 + 1560*x^9 + 6138*x^10 + 24570*x^11 + 99738*x^12 + ...
(3) Let R(x) be the series reversion of A(x), R(A(x)) = x, then
R(x) = x - x^2 - x^4 - x^10 - x^28 - x^82 - x^244 - x^730 + ... + -x^(3^n+1) + ...
SPECIFIC VALUES.
A(1/5) = 0.2937167157779136500722875625899113632023...
A(1/6) = 0.2150539986528250703029216090552606059919...
A(1/7) = 0.1740789503092637057579787813575613522976...
A(1/8) = 0.1471095742959948638409574049543396207684...
-
/* Using series reversion of x - x*Sum_{n>=0} x^(3^n) */
{a(n) = my(A); A = serreverse( x - x*sum(k=0, ceil(log(n)/log(3)), x^(3^k) +x*O(x^n)) ); polcoeff(A, n)}
for(n=1, 35, print1(a(n), ", "))
-
/* Using A(x)^3 = A( x*A(x)^2 + A(x)^4 ) */
{a(n) = my(A=[1], F); for(i=1, n, A = concat(A, 0); F = x*Ser(A);
A[#A] = polcoeff( subst(F, x, x*F^2 + F^4 ) - F^3, #A+2) ); A[n]}
for(n=1, 35, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments