cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371716 Expansion of g.f. A(x) satisfies A( x*A(x)^3 + x*A(x)^4 ) = A(x)^4.

Original entry on oeis.org

1, 1, 1, 1, 2, 7, 22, 57, 131, 298, 738, 2003, 5600, 15380, 41224, 109769, 296010, 813333, 2261818, 6307070, 17560050, 48877852, 136457322, 382803675, 1078562370, 3047295816, 8623046992, 24432992884, 69345396556, 197211214852, 561975160288, 1604186098089, 4585779820379
Offset: 1

Views

Author

Paul D. Hanna, May 03 2024

Keywords

Comments

Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108):
(1) C(x)^2 = C( x*C(x)*(1 + C(x)) ),
(2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ),
(3) C(x)^8 = C( x*C(x)^7*(1 + C(x))*(1 + C(x)^2)*(1 + C(x)^4) ),
(4) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0.

Examples

			G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 7*x^6 + 22*x^7 + 57*x^8 + 131*x^9 + 298*x^10 + 738*x^11 + 2003*x^12 + 5600*x^13 + 15380*x^14 + ...
where A( x*A(x)^3*(1 + A(x)) ) = A(x)^4.
RELATED SERIES.
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) = x/((1+x)*(1+x^4)*(1+x^16)*(1+x^64)*(1+x^256)*(1+x^1024)*...) = x - x^2 + x^3 - x^4 + x^9 - x^10 + x^11 - x^12 + x^33 - x^34 + ...
We can show that g.f. A(x) = A( x*A(x)^3*(1 + A(x)) )^(1/4) satisfies
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(4^n))
by substituting x*A(x)^3*(1 + A(x)) for x in (4) to obtain
A(x)^4 = x * A(x)^3*(1 + A(x)) * Product_{n>=1} (1 + A(x)^(4^n))
which is equivalent to formula (4).
SPECIFIC VALUES.
A(1/3) = 0.6209428791888803994421374991623399343094...
A(1/4) = 0.3392462304609640143453810140211726768116...
A(1/5) = 0.2512464727722296135954631316870173555867...
A(t) = 1/2 and A(t*3/16) = 1/16 at t = 0.31372070319804379323613829910755157...
A(t) = 1/3 and A(t*4/81) = 1/81 at t = 0.24695121377537689193140239461709572...
A(t) = 1/4 and A(t*5/256) = 1/256 at t = 0.199221789836883544932674834867379...
		

Crossrefs

Programs

  • PARI
    /* Using series reversion of x/Product_{n>=0} (1 + x^(4^n)) */
    {a(n) = my(A); A = serreverse( x/prod(k=0, ceil(log(n)/log(4)), (1 + x^(4^k) +x*O(x^n)) ) ); polcoeff(A, n)}
    for(n=1, 35, print1(a(n), ", "))
    
  • PARI
    /* Using A(x)^4 = A( x*A(x)^3 + x*A(x)^4 ) */
    {a(n) = my(A=[1], F); for(i=1, n, A = concat(A, 0); F = x*Ser(A);
    A[#A] = polcoeff( subst(F, x, x*F^3 + x*F^4 ) - F^4, #A+3) ); A[n]}
    for(n=1, 35, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^4 = A( x*A(x)^3*(1 + A(x)) ).
(2) A(x)^16 = A( x*A(x)^15*(1 + A(x))*(1 + A(x)^4) ).
(3) A(x)^64 = A( x*A(x)^63*(1 + A(x))*(1 + A(x)^4)*(1 + A(x)^16) ).
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(4^n)).
(5) A(x) = Series_Reversion( x / Product_{n>=0} (1 + x^(4^n)) ).
The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} 4^n * A(r)^(4^n) / (1 + A(r)^(4^n)) and r = A(r) / Product_{n>=0} (1 + A(r)^(4^n)), where r = 0.33394799468036632700505690802809657984166722... and A(r) = 0.64588119033501052326223671937159514208118071...