cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371764 Triangle read by rows: Trace of the Akiyama-Tanigawa algorithm for powers x^3.

Original entry on oeis.org

0, 1, 1, 13, 14, 8, 73, 86, 57, 27, 301, 374, 273, 148, 64, 1081, 1382, 1065, 628, 305, 125, 3613, 4694, 3729, 2308, 1205, 546, 216, 11593, 15206, 12297, 7828, 4265, 2058, 889, 343, 36301, 47894, 39153, 25348, 14165, 7098, 3241, 1352, 512
Offset: 0

Views

Author

Peter Luschny, Apr 15 2024

Keywords

Comments

See the comments in A371763.

Examples

			Triangle starts:
0:                        0
1:                      1,  1
2:                   13,  14, 8
3:                 73, 86,  57, 27
4:             301, 374, 273, 148, 64
5:        1081, 1382, 1065, 628, 305, 125
6:     3613, 4694, 3729, 2308, 1205, 546, 216
7: 11593, 15206, 12297, 7828, 4265, 2058, 889, 343
		

Crossrefs

Cf. A006230 (left edge).

Programs

  • Julia
    # Using function ATPtriangle from A371763.
    ATPtriangle(3, 8)
  • Maple
    # Using function ATPtriangle from A371763.
    ATPtriangle(3, 9);
    # Or, after Detlef Meya:
    T := (n,k) -> (k+1)*(7-(k+2)*(3*2^(n-k+1)-(k+3)*3^(n-k)))-`if`(n=k,1,0):
    seq(seq(T(n, k), k = 0..n), n = 0..8);  # Peter Luschny, Apr 21 2024
  • Mathematica
    T[n_, k_] := If[n==k, n^3, 2*Binomial[k + 3, k]*3^(n - k + 1) - 6*Binomial[k + 2, k]*2^(n - k + 1) + 7*(k + 1)]; Flatten[Table[T[n, k],{n, 0, 8},{k, 0, n}]] (* Detlef Meya, Apr 21 2024 *)
  • Python
    # See function ATPowList in A371761.
    

Formula

T(n, k) = n^3 if n=k, otherwise 2*binomial(k + 3, k)*3^(n - k + 1) - 6*binomial(k + 2, k)*2^(n - k + 1) + 7*(k + 1). - Detlef Meya, Apr 21 2024