cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372148 a(n) = A371764(n, 2).

Original entry on oeis.org

1, 14, 86, 374, 1382, 4694, 15206, 47894, 148262, 453974, 1380326, 4177814, 12607142, 37968854, 114201446, 343194134, 1030762022, 3094645334, 9288654566, 27875400854, 83645076902, 250972979414, 752994435686, 2259134301974
Offset: 1

Views

Author

Detlef Meya, Apr 20 2024

Keywords

Crossrefs

Cf. A371764.

Programs

  • Maple
    a := n -> 2*(4*3^n - 9*2^n + 7) - `if`(n=1, 1, 0);
    seq(a(n), n = 1..24);  # Peter Luschny, Apr 20 2024
  • Mathematica
    A372148[n_] := 2*(4*3^n - 9*2^n + 7) - Boole[n == 1]; Array[A372148,50] (* or *)
    LinearRecurrence[{6, -11, 6}, {1, 14, 86, 374}, 50] (* Paolo Xausa, May 25 2024 *)

Formula

a(n) = 2*(4*3^n - 9*2^n + 7) - [n = 1]. - Hugo Pfoertner, Apr 20 2024
G.f.: x*(1 + 8*x + 13*x^2 + 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 3*x)). - Stefano Spezia, Apr 21 2024

A371763 Triangle read by rows: Trace of the Akiyama-Tanigawa algorithm for powers x^2.

Original entry on oeis.org

0, 1, 1, 5, 6, 4, 13, 18, 15, 9, 29, 42, 39, 28, 16, 61, 90, 87, 68, 45, 25, 125, 186, 183, 148, 105, 66, 36, 253, 378, 375, 308, 225, 150, 91, 49, 509, 762, 759, 628, 465, 318, 203, 120, 64, 1021, 1530, 1527, 1268, 945, 654, 427, 264, 153, 81
Offset: 0

Views

Author

Peter Luschny, Apr 15 2024

Keywords

Comments

The Akiyama-Tanigawa is a sequence-to-sequence transformation AT := A -> B. If A(n) = 1/(n + 1) then B(n) are the Bernoulli numbers. Tracing the algorithm generates a triangle where the right edge is sequence A and the left edge is its transform B.
Here we consider the sequence A(n) = n^2 that is transformed into sequence B(n) = |A344920(n)|. The case A(n) = n^3 is A371764. Sequence [1, 1, 1, ...] generates A023531 and sequence [0, 1, 2, 3, ...] generates A193738.
In their general form, the AT-transforms of the powers are closely related to the poly-Bernoulli numbers A099594 and generate the rows of the array A371761.

Examples

			Triangle starts:
0:                  0
1:               1,   1
2:             5,   6,   4
3:          13,  18,  15,   9
4:        29,  42,  39,  28,  16
5:      61,  90,  87,  68,  45,  25
6:    125, 186, 183, 148, 105,  66, 36
7:  253, 378, 375, 308, 225, 150, 91, 49
		

Crossrefs

Family of triangles: A023531 (n=0), A193738 (n=1), this triangle (n=2), A371764 (n=3).

Programs

  • Julia
    function ATPtriangle(k::Int, len::Int)
        A = Vector{BigInt}(undef, len)
        B = Vector{Vector{BigInt}}(undef, len)
        for n in 0:len-1
            A[n+1] = n^k
            for j = n:-1:1
                A[j] = j * (A[j+1] - A[j])
            end
            B[n+1] = A[1:n+1]
        end
        return B
    end
    for (n, row) in enumerate(ATPtriangle(2, 9))
        println("$(n-1): ", row)
    end
  • Maple
    ATProw := proc(k, n) local m, j, A;
       for m from 0 by 1 to n do
          A[m] := m^k;
          for j from m by -1 to 1 do
             A[j - 1] := j * (A[j] - A[j - 1])
       od od; convert(A, list) end:
    ATPtriangle := (p, len) -> local k;
         ListTools:-Flatten([seq(ATProw(p, k), k = 0..len)]):
    ATPtriangle(2, 9);
  • Mathematica
    T[n,k] := If[n==k, n^2, (k+1)*(2^(n-k)*(k+2)-3)]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Apr 19 2024 *)
  • Python
    # See function ATPowList in A371761.
    

Formula

T(n, k) = n^2 if n=k, otherwise (k + 1)*(2^(n - k)*(k + 2) - 3). - Detlef Meya, Apr 19 2024
Showing 1-2 of 2 results.