cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371798 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-2*k-1,n-2*k).

Original entry on oeis.org

1, 1, 2, 7, 26, 96, 356, 1331, 5014, 19006, 72412, 277058, 1063856, 4097510, 15823432, 61245987, 237536326, 922906150, 3591500972, 13996328322, 54614894396, 213360770840, 834409399672, 3266370155262, 12797894251276, 50184309630196, 196936674150296
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k Binomial[2n-2k-1,n-2k],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Oct 31 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-2*k-1, n-2*k));

Formula

a(n) = [x^n] 1/((1+x^2) * (1-x)^n).
a(n) = binomial(2*n-1, n)*hypergeom([1, (1-n)/2, -n/2], [1/2-n, 1-n], -1). - Stefano Spezia, Apr 06 2024
a(n) ~ 2^(2*n+1) / (5*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 07 2024
Conjectured g.f.: 1 + x*(4 - 10*x + 8*x^2)/(2 - 11*x + 14*x^2 - 8*x^3 + (2 - 3*x)*sqrt(1 - 4*x)) (see Elizalde et al. at p. 13). - Stefano Spezia, Dec 27 2024