cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371820 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n+2,n-3*k).

Original entry on oeis.org

1, 4, 15, 55, 200, 726, 2640, 9636, 35343, 130339, 483395, 1802901, 6760781, 25482643, 96506229, 367077447, 1401772536, 5372120718, 20653929804, 79634421312, 307826528346, 1192608522258, 4629875048634, 18006340509702, 70142823370656, 273633773330844
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n+2, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^3+x^3) * (1-x)^n).
a(n) = binomial(2*(1+n), n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [1+n/3, (4+n)/3, (5+n)/3], 1). - Stefano Spezia, Apr 07 2024
a(n) ~ 2^(2*n+1) / sqrt(Pi*n). - Vaclav Kotesovec, Apr 19 2024