cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371861 Decimal expansion of Integral_{x=0..1} sqrt(1 - x^3) dx.

Original entry on oeis.org

8, 4, 1, 3, 0, 9, 2, 6, 3, 1, 9, 5, 2, 7, 2, 5, 5, 6, 7, 0, 5, 0, 1, 1, 4, 4, 7, 4, 3, 0, 1, 7, 6, 4, 8, 1, 2, 7, 7, 8, 1, 3, 3, 2, 3, 2, 5, 4, 3, 9, 1, 6, 5, 7, 7, 0, 9, 1, 9, 6, 3, 9, 2, 2, 4, 5, 7, 7, 0, 8, 5, 9, 5, 8, 9, 0, 8, 1, 9, 7, 7, 6, 4, 2, 5, 1, 1, 3, 5, 9, 8, 9, 1, 0, 1, 4, 8, 7, 0, 8, 2, 3, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			0.8413092631952725567050114474301764812778...
		

Crossrefs

Decimal expansions of Integral_{x=0..1} sqrt(1 - x^k) dx: A003881 (k=2), this sequence (k=3), A225119 (k=4).

Programs

  • Mathematica
    RealDigits[Sqrt[Pi] Gamma[1/3]/(6 Gamma[11/6]), 10, 103][[1]]
    RealDigits[Sqrt[3] * Gamma[1/3]^3 / (5*Pi*2^(4/3)), 10, 103][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)
  • PARI
    intnum(x=0, 1, sqrt(1 - x^3)) \\ Michel Marcus, Apr 10 2024

Formula

Equals sqrt(Pi) * Gamma(1/3) / (6 * Gamma(11/6)).
Equals sqrt(3) * Gamma(1/3)^3 / (5*Pi*2^(4/3)). - Vaclav Kotesovec, Apr 09 2024
Equals 3*A118292/10. - Hugo Pfoertner, Apr 09 2024