cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A372968 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} n/gcd(x_1, x_2, ..., x_k, n).

Original entry on oeis.org

1, 1, 3, 1, 7, 7, 1, 15, 25, 11, 1, 31, 79, 55, 21, 1, 63, 241, 239, 121, 21, 1, 127, 727, 991, 621, 175, 43, 1, 255, 2185, 4031, 3121, 1185, 337, 43, 1, 511, 6559, 16255, 15621, 7471, 2395, 439, 61, 1, 1023, 19681, 65279, 78121, 45801, 16801, 3823, 673, 63
Offset: 1

Views

Author

Seiichi Manyama, May 18 2024

Keywords

Examples

			Square array begins:
   1,   1,    1,     1,      1,      1, ...
   3,   7,   15,    31,     63,    127, ...
   7,  25,   79,   241,    727,   2185, ...
  11,  55,  239,   991,   4031,  16255, ...
  21, 121,  621,  3121,  15621,  78121, ...
  21, 175, 1185,  7471,  45801, 277495, ...
		

Crossrefs

Columns k=1..5 give A057660, A350156, A372952, A372961, A371878.
Main diagonal gives A372969.

Programs

  • Mathematica
    f[p_, e_, k_] := (p^((k + 1)*e + k + 1) - p^((k + 1)*e + 1) + p - 1)/(p^(k + 1) - 1); T[1, k_] := 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 25 2024 *)
  • PARI
    T(n, k) = sumdiv(n, d, moebius(n/d)*n/d*sigma(d, k+1));

Formula

T(n,k) = Sum_{d|n} mu(n/d) * (n/d) * sigma_{k+1}(d).
T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} ( gcd(x_1, x_2, ..., x_{k-1}, n)/gcd(x_1, x_2, ..., x_k, n) )^k.
From Amiram Eldar, May 25 2024: (Start)
T(n,k) for a given k is multiplicative with T(p^e, k) = (p^((k+1)*(e+1)) - p^((k+1)*e+1) + p - 1)/(p^(k+1)-1).
Dirichlet g.f. of T(n, k) for a given k: zeta(s)*zeta(s-k-1)/zeta(s-1).
Sum_{m=1..n} T(m, k) ~ c * n^(k+2) / (k+2), where c = zeta(k+2)/zeta(k+1). (End)

A373007 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x_5, n) )^2.

Original entry on oeis.org

1, 125, 2179, 15997, 78101, 272375, 823495, 2047613, 4765465, 9762625, 19487051, 34857463, 62748349, 102936875, 170182079, 262094461, 410338385, 595683125, 893871379, 1249381697, 1794395605, 2435881375, 3404824919, 4461748727, 6101640601, 7843543625, 10422071947
Offset: 1

Views

Author

Seiichi Manyama, May 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(7*e+7) - p^(7*e+2) + p^2 - 1)/(p^7-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 27] (* Amiram Eldar, May 25 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^2*sigma(d, 7));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( gcd(x_1, x_2, x_3, n)/gcd(x_1, x_2, x_3, x_4, x_5, n) )^5.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^2 * sigma_7(d).
From Amiram Eldar, May 25 2024: (Start)
Multiplicative with a(p^e) = (p^(7*e+7) - p^(7*e+2) + p^2 - 1)/(p^7-1).
Dirichlet g.f.: zeta(s)*zeta(s-7)/zeta(s-2).
Sum_{k=1..n} a(k) ~ c * n^8 / 8, where c = zeta(8)/zeta(6) = Pi^2/10 = 0.986960440108... . (End)

A373105 a(n) = sigma_10(n^2)/sigma_5(n^2).

Original entry on oeis.org

1, 993, 58807, 1016801, 9762501, 58395351, 282458443, 1041204193, 3472494301, 9694163493, 25937263551, 59795016407, 137858120557, 280481233899, 574103396307, 1066193093601, 2015992480593, 3448186840893, 6131063781703, 9926520779301
Offset: 1

Views

Author

Seiichi Manyama, May 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(10*e+5) + 1)/(p^5 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, May 25 2024 *)
  • PARI
    a(n) = sigma(n^2, 10)/sigma(n^2, 5);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^5*sigma(d, 10));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x^5, n) )^5.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^5 * sigma_10(d).
From Amiram Eldar, May 25 2024: (Start)
Multiplicative with a(p^e) = (p^(10*e+5) + 1)/(p^5 + 1).
Dirichlet g.f.: zeta(s)*zeta(s-10)/zeta(s-5).
Sum_{k=1..n} a(k) ~ c * n^11 / 11, where c = zeta(11)/zeta(6) = 0.9834383562... . (End)

A373103 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x_5, n) )^4.

Original entry on oeis.org

1, 497, 19603, 254449, 1952501, 9742691, 40351207, 130277873, 385845769, 970392997, 2357933051, 4987963747, 10604470813, 20054549879, 38274877103, 66702270961, 118587792977, 191765347193, 322687567459, 496811926949, 791004710821, 1171892726347, 1801152381623
Offset: 1

Views

Author

Seiichi Manyama, May 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] :=  (p^(9*e+9) - p^(9*e+4) + p^4 - 1)/(p^9-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* Amiram Eldar, May 25 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^4*sigma(d, 9));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*(n/d)^8*sigma(d^2, 8)/sigma(d^2, 4));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, x_3, x_4, x_5, n) )^5.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^4 * sigma_9(d).
a(n) = Sum_{d|n} phi(n/d) * (n/d)^8 * sigma_8(d^2)/sigma_4(d^2).
From Amiram Eldar, May 25 2024: (Start)
Multiplicative with a(p^e) = (p^(9*e+9) - p^(9*e+4) + p^4 - 1)/(p^9-1).
Dirichlet g.f.: zeta(s)*zeta(s-9)/zeta(s-4).
Sum_{k=1..n} a(k) ~ c * n^10 / 10, where c = zeta(10)/zeta(6) = Pi^4/99 = 0.983930212464... . (End)
Showing 1-4 of 4 results.