cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371881 Decimal expansion of Gamma(1/20).

Original entry on oeis.org

1, 9, 4, 7, 0, 0, 8, 5, 3, 1, 1, 2, 5, 5, 5, 1, 2, 8, 6, 4, 0, 4, 7, 3, 2, 0, 9, 6, 7, 7, 2, 7, 1, 2, 7, 5, 4, 5, 6, 3, 0, 4, 1, 9, 5, 8, 3, 3, 4, 1, 9, 7, 5, 6, 8, 1, 0, 8, 2, 7, 8, 3, 7, 5, 5, 3, 6, 4, 5, 5, 6, 2, 1, 9, 5, 6, 3, 6, 4, 9, 1, 0, 7, 9, 0, 7, 7, 7, 4, 9, 8, 4, 3, 7, 7, 4, 1, 4, 2, 3, 0, 9, 6, 5, 7
Offset: 2

Views

Author

Vaclav Kotesovec, Apr 15 2024

Keywords

Examples

			19.4700853112555128640473209677271275456304195833419756810827837553645...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/20), 130);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    RealDigits[Gamma[1/20], 10, 120][[1]]
    RealDigits[2^(33/40) * 5^(5/16) * (1 + Sqrt[5])^(1/8) * Sqrt[5^(1/4) + Sqrt[2 + Sqrt[5]]] * Sqrt[Pi * Gamma[1/10]] * QPochhammer[E^(-2*Sqrt[5]*Pi)] / E^(Sqrt[5]*Pi/12), 10, 120][[1]]

Formula

Equals 2^(33/40) * 5^(5/16) * (1 + sqrt(5))^(1/8) * sqrt(5^(1/4) + sqrt(2 + sqrt(5))) * sqrt(Pi*Gamma(1/10)) * QPochhammer(exp(-2*sqrt(5)*Pi)) / exp(sqrt(5)*Pi/12).