A371907 a(n) = sum of 2^(k-1) such that floor(n/prime(k)) is even.
0, 0, 0, 1, 1, 2, 2, 3, 1, 4, 4, 7, 7, 14, 8, 9, 9, 10, 10, 15, 5, 20, 20, 23, 19, 50, 48, 57, 57, 62, 62, 63, 45, 108, 96, 99, 99, 226, 192, 197, 197, 206, 206, 223, 217, 472, 472, 475, 467, 470, 404, 437, 437, 438, 418, 427, 297, 808, 808, 815, 815, 1838, 1828
Offset: 1
Examples
a(1) = 0 since n = 1 is the empty product. a(2) = 0 since for n = prime(1) = 2, floor(2/2) = 1 is odd. Therefore a(2) = 0. a(3) = 0 since for n = 3 and prime(1) = 2, floor(3/2) = 1 is odd, and for prime(2) = 3, floor(3/3) = 1 is odd. Hence a(3) = 0. a(4) = 1 since for n = 4 and prime(1) = 2, floor(4/2) = 2 is even, but for prime(2) = 3, floor(4/3) = 1 is odd. Therefore, a(4) = 2^(1-1) = 1. a(8) = 1 since for n = 8, both floor(8/2) and floor(8/3) are even, but both floor(8/5) and floor(8/7) are odd. Therefore, a(8) = 2^(1-1) + 2^(2-1) = 1 + 2 = 3, etc. Table relating a(n) with b(n), s(n), and t(n), diagramming powers of 2 with "x" that sum to a(n) or b(n), or prime factors with "x" that produce s(n) or t(n). Sequences s(n) = A372007(n), t(n) = A372000(n), c(n) = A034386(n), b(n) = A371906(n), and c(n) = A357215(n) = a(n) + b(n). Column A (at top) shows powers of 2 that sum to a(n), with B same for b(n), while column S represents prime factors of s(n), T same of t(n). [A] 2^k [B] 2^k n 0123 a(n) 012345 b(n) c(n) s(n) t(n) v(n) -------------------------------------------------------- 1 . 0 . 0 2^0-1 1 1 P(0) 2 . 0 x 1 2^1-1 1 2 P(1) 3 . 0 xx 3 2^2-1 1 6 P(2) 4 x 1 .x 2 2^2-1 2 3 P(2) 5 x 1 .xx 6 2^3-1 2 15 P(3) 6 .x 2 x.x 5 2^3-1 3 10 P(3) 7 .x 2 x.xx 13 2^4-1 3 70 P(4) 8 xx 3 ..xx 12 2^4-1 6 35 P(4) 9 x 1 .xxx 14 2^4-1 2 105 P(4) 10 ..x 4 xx.x 11 2^4-1 5 42 P(4) 11 ..x 4 xx.xx 27 2^5-1 5 462 P(5) 12 xxx 7 ...xx 24 2^5-1 30 77 P(5) 13 xxx 7 ...xxx 56 2^6-1 30 1001 P(6) 14 .xxx 14 x...xx 49 2^6-1 105 286 P(6) 15 ...x 8 xxx.xx 55 2^6-1 7 4290 P(6) 16 x..x 9 .xx.xx 54 2^6-1 14 2145 P(6) -------------------------------------------------------- 2357 [T] 11 [S] 235713
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, "Tiger Stripe" Factors of Primorials, ResearchGate, 2024.
- Plot powers 2^(i-1) that sum to a(n) at (x,y) = (n,i) for n = 1..2048, 12X vertical exaggeration.
Programs
-
Mathematica
Table[Total[2^(-1 + Select[Range@ PrimePi[n], EvenQ@ Quotient[n, Prime[#]] &])], {n, 50}]
-
PARI
a(n) = my(vp=primes([1, n])); vecsum(apply(x->2^(x-1), Vec(select(x->(((n\x) % 2)==0), vp, 1)))); \\ Michel Marcus, Apr 30 2024
Comments