A371981 Number of primes between two successive Sophie Germain primes, with Sophie Germain primes not themselves included in the count.
0, 0, 1, 3, 0, 2, 2, 6, 0, 5, 1, 7, 0, 1, 7, 0, 1, 5, 1, 9, 8, 1, 2, 7, 2, 10, 7, 2, 0, 3, 3, 3, 2, 4, 15, 5, 7, 0, 1, 2, 8, 14, 0, 7, 13, 4, 1, 3, 4, 0, 5, 3, 1, 17, 9, 9, 0, 2, 3, 5, 4, 1, 0, 7, 2, 14, 7, 2, 6, 0, 6, 7, 0, 18, 0, 6, 1, 7, 9, 3, 2, 0, 5, 28, 5, 3, 3, 2, 1, 5, 6, 7, 3, 15, 2
Offset: 1
Keywords
Examples
a(4) = 3 because there are 3 primes between 11 and 23: 13, 17 and 19.
Programs
-
Mathematica
-1 + Subtract @@ Map[PrimePi, {Last[#], First[#]}] & /@ Partition[Select[Prime[Range[500]], PrimeQ[2 # + 1] &], 2, 1] (* Michael De Vlieger, Apr 19 2024 *)
-
PARI
lista(nn) = my(vp = select(p->isprime(2*p+1), primes(nn)), wp = apply(primepi, vp)); vector(#wp-1, k, wp[k+1]-wp[k]-1); \\ Michel Marcus, May 21 2024
-
Python
from sympy import isprime l = [] s = 0 for i in range(3,3800): if isprime(i): if isprime(2*i + 1): l.append(s) s = 0 else: s += 1 print(l)
Comments