A372014 T(n,k) is the total number of levels in all Motzkin paths of length n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.
1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 4, 6, 4, 3, 1, 8, 14, 12, 7, 4, 1, 18, 32, 33, 21, 11, 5, 1, 44, 74, 84, 64, 34, 16, 6, 1, 113, 180, 208, 181, 111, 52, 22, 7, 1, 296, 457, 520, 485, 344, 179, 76, 29, 8, 1, 782, 1195, 1334, 1273, 1000, 599, 274, 107, 37, 9, 1
Offset: 0
Examples
In the A001006(3) = 4 Motzkin paths of length 3 there are 2 levels with 1 node, 2 levels with 2 nodes, 2 levels with 3 nodes, and 1 level with 4 nodes. 2 _ 1 1 2 / \ 3 /\_ 3 _/\ 4 ___ . So row 3 is [2, 2, 2, 1]. Triangle T(n,k) begins: 1; 0, 1; 1, 1, 1; 2, 2, 2, 1; 4, 6, 4, 3, 1; 8, 14, 12, 7, 4, 1; 18, 32, 33, 21, 11, 5, 1; 44, 74, 84, 64, 34, 16, 6, 1; 113, 180, 208, 181, 111, 52, 22, 7, 1; 296, 457, 520, 485, 344, 179, 76, 29, 8, 1; 782, 1195, 1334, 1273, 1000, 599, 274, 107, 37, 9, 1; ...
Links
- Alois P. Heinz, Rows n = 0..28, flattened
- Wikipedia, Motzkin number
Crossrefs
Programs
-
Maple
g:= proc(x, y, p) (h-> `if`(x=0, add(z^coeff(h, z, i) , i=0..degree(h)), b(x, y, h)))(p+z^y) end: b:= proc(x, y, p) option remember; `if`(y+2<=x, g(x-1, y+1, p), 0) +`if`(y+1<=x, g(x-1, y, p), 0)+`if`(y>0, g(x-1, y-1, p), 0) end: T:= n-> (p-> seq(coeff(p, z, i), i=1..n+1))(g(n, 0$2)): seq(T(n), n=0..10);
Comments