cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372015 Product of Fibonacci and self-convolution of Fibonacci numbers: a(n) = A000045(n+1)*A001629(n+1).

Original entry on oeis.org

0, 1, 4, 15, 50, 160, 494, 1491, 4420, 12925, 37380, 107136, 304764, 861445, 2421700, 6775755, 18879734, 52413856, 145038890, 400183575, 1101277060, 3023462521, 8282790024, 22646131200, 61805595000, 168399404425, 458128878724, 1244567262471, 3376576740410, 9149594423200
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 15 2024

Keywords

Comments

Conjecture: a(n) is the total number of pairs of adjacent parts that are the same color in all n-color compositions of n+1. - John Tyler Rascoe, Jul 30 2024

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n < 3 then return n^2 fi;
    -((2 - 2*n^2 + n)*a(n - 1) + (1 - 2*n^2 + 3*n)*a(n - 2) + n^2*a(n - 3))/(n - 1)^2 end: seq(a(n), n = 0..29);  # Peter Luschny, Apr 16 2024
  • Mathematica
    CoefficientList[Series[x(1-x)/((1+x)*(1-3*x+x^2)^2),{x,0,29}],x] (* Stefano Spezia, Apr 16 2024 *)
  • PARI
    A_x(N)= {my(x='x+O('x^N)); concat([0],Vec(x*(1-x)/((1+x)*(1-3*x+x^2)^2)))}
    A_x(40) \\ John Tyler Rascoe, Jul 29 2024

Formula

a(n) = F(n+1)*((n+2)*F(n) + (n)*F(n+2))/5 where F(n) = A000045(n) is the Fibonacci numbers.
G.f.: x*(1-x)/((1+x)*(1-3*x+x^2)^2).