cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372326 Number A(n,k) of acyclic orientations of the Turán graph T(k*n,n); square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 14, 6, 1, 1, 1, 230, 426, 24, 1, 1, 1, 6902, 122190, 24024, 120, 1, 1, 1, 329462, 90768378, 165392664, 2170680, 720, 1, 1, 1, 22934774, 138779942046, 4154515368024, 457907248920, 287250480, 5040, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2024

Keywords

Comments

The Turán graph T(k*n,n) is the complete n-partite graph K_{k,...,k}.
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Square array A(n,k) begins:
  1,   1,       1,            1,                  1, ...
  1,   1,       1,            1,                  1, ...
  1,   2,      14,          230,               6902, ...
  1,   6,     426,       122190,           90768378, ...
  1,  24,   24024,    165392664,      4154515368024, ...
  1, 120, 2170680, 457907248920, 495810323060597880, ...
		

Crossrefs

Columns k=0-2 give: A000012, A000142, A033815.
Rows n=0+1,2-3 give: A000012, A048163(k+1), A370961.
Main diagonal gives A372084.
Cf. A267383.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [k$n, 0],
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, nops(l)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    A[n_, k_] := A[n, k] = Module[{q = -1, l, b}, l = Append[Table[k, {n}], 0];
       b[nn_, j_] := b[nn, j] = If[j == 1, Product[q - i, {i, 0, nn - 1}]*
       (q - nn)^l[[1]], Sum[b[nn + m, j - 1]*Coefficient[g[l[[j]]], x, m],
       {m, 0, l[[j]]}]];
       Abs[b[0, Length[l]]]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jun 09 2024, after Alois P. Heinz *)

Formula

A(n,k) = A267383(k*n,n).