A372326 Number A(n,k) of acyclic orientations of the Turán graph T(k*n,n); square array A(n,k), n>=0, k>=1, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 14, 6, 1, 1, 1, 230, 426, 24, 1, 1, 1, 6902, 122190, 24024, 120, 1, 1, 1, 329462, 90768378, 165392664, 2170680, 720, 1, 1, 1, 22934774, 138779942046, 4154515368024, 457907248920, 287250480, 5040, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 1, 2, 14, 230, 6902, ... 1, 6, 426, 122190, 90768378, ... 1, 24, 24024, 165392664, 4154515368024, ... 1, 120, 2170680, 457907248920, 495810323060597880, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..42, flattened
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
- Wikipedia, Turán graph
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add( expand(x*g(n-j))*binomial(n-1, j-1), j=1..n)) end: A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [k$n, 0], proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)* (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j])) end; abs(b(0, nops(l))) end: seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]]; A[n_, k_] := A[n, k] = Module[{q = -1, l, b}, l = Append[Table[k, {n}], 0]; b[nn_, j_] := b[nn, j] = If[j == 1, Product[q - i, {i, 0, nn - 1}]* (q - nn)^l[[1]], Sum[b[nn + m, j - 1]*Coefficient[g[l[[j]]], x, m], {m, 0, l[[j]]}]]; Abs[b[0, Length[l]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jun 09 2024, after Alois P. Heinz *)
Formula
A(n,k) = A267383(k*n,n).
Comments