cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372530 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x)/(1 - A(x)) ).

Original entry on oeis.org

1, 1, 3, 9, 33, 125, 501, 2065, 8739, 37685, 165107, 732681, 3286679, 14878885, 67889851, 311896993, 1441536321, 6698017445, 31269529601, 146601334841, 689945263873, 3258334336349, 15436401872405, 73341269533009, 349381321611505, 1668434132560765, 7985390073708765
Offset: 1

Views

Author

Paul D. Hanna, May 13 2024

Keywords

Comments

Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108):
(1) C(x)^2 = C( x*C(x)*(1 + C(x)) ),
(2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ),
(3) C(x)^8 = C( x*C(x)^7*(1 + C(x))*(1 + C(x)^2)*(1 + C(x)^4) ),
(4) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0.

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 9*x^4 + 33*x^5 + 125*x^6 + 501*x^7 + 2065*x^8 + 8739*x^9 + 37685*x^10 + 165107*x^11 + 732681*x^12 + ...
where A( x*A(x)/(1 - A(x)) ) = A(x)^2.
RELATED SERIES.
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x * Product_{n>=0} (1 - x^(2^n)) = x - x^2 - x^3 + x^4 - x^5 + x^6 + x^7 - x^8 - x^9 + x^10 + x^11 - x^12 + x^13 - x^14 - x^15 + x^16 + ... + (-1)^A010060(n-1) * x^n + ...
thus,
x = A(x) * (1 - A(x)) * (1 - A(x)^2) * (1 - A(x)^4) * (1 - A(x)^8) * (1 - A(x)^16) * ... * (1 - A(x)^(2^n)) * ...
SPECIFIC VALUES.
A(t) = 1/3 at t = (1/3) * Product_{n>=0} (1 - 1/3^(2^n)) = 0.195062471888103139123433255203480726664398592...
A(t) = 1/4 at t = (1/4) * Product_{n>=0} (1 - 1/4^(2^n)) = 0.175091932719784804433277263483089433821043251...
A(1/6) = 0.2285942310240955503097133963953487564542629539800372181...
A(1/7) = 0.1803372891149269875688065840927292319030238580575714990...
A(1/8) = 0.1506715662175837437127190414569072051853697889895576799...
A(1/6)^2 = A(t) at t = (1/6)*A(1/6)/(1 - A(1/6)) = 0.0493891023845...
A(1/7)^2 = A(t) at t = (1/7)*A(1/7)/(1 - A(1/7)) = 0.0314305744685...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0); F=Ser(A);
    A[#A] = polcoeff( subst(F,x, x*F/(1 - F) ) - F^2, #A) ); H=A; A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*A(x)/(1 - A(x)) ).
(2) A(x)^4 = A( x*A(x)^3/((1 - A(x))*(1 - A(x)^2)) ).
(3) A(x)^8 = A( x*A(x)^7/((1 - A(x))*(1 - A(x)^2)*(1 - A(x)^4)) ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1)/Product_{k=0..n-1} (1 - A(x)^(2^k)) ) for n > 0.
(5) A(x) = x / Product_{n>=0} (1 - A(x)^(2^n)).
(6) A(x) = x * Product_{n>=0} (1 + A(x)^(2^n))^(n+1). - Paul D. Hanna, Jun 26 2024
(7) A(x) = Series_Reversion( x * Product_{n>=0} (1 - x^(2^n)) ).
(8) x = Sum_{n>=1} (-1)^A010060(n-1) * A(x)^n, where A010060 is the Thue-Morse sequence.
The radius of convergence r and A(r) satisfy 1 = Sum_{n>=0} 2^n * A(r)^(2^n)/(1 - A(r)^(2^n)) and r = A(r) * Product_{n>=0} (1 - A(r)^(2^n)), where r = 0.19736158352631556925015099049581233030702919287488... and A(r) = 0.37298513723316144189484491702105095014110332846051...
Given r and A(r) above, A(r) also satisfies 1 = Sum_{n>=0} (n+1)*2^n * A(r)^(2^n)/(1 + A(r)^(2^n)). - Paul D. Hanna, Jun 26 2024