A372721 Number of partitions of [n] having exactly one block of maximal size.
0, 1, 1, 4, 11, 36, 132, 596, 2809, 14608, 79448, 461748, 2844052, 18559360, 127712483, 925057295, 7012810967, 55513992168, 457415487326, 3913510354554, 34702368052772, 318406785389976, 3018747693634775, 29537880351353635, 297953826680083794, 3095201088676962296
Offset: 0
Keywords
Examples
a(1) = 1: 1. a(2) = 1: 12. a(3) = 4: 123, 12|3, 13|2, 1|23. a(4) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34. a(5) = 36: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 12|3|4|5, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 13|2|4|5, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|23|4|5, 145|2|3, 14|2|3|5, 1|245|3, 1|24|3|5, 1|2|345, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, m, t) option remember; `if`(n=0, `if`(t=1, 1, 0), add(binomial(n-1, j-1)*b(n-j, max(j, m), `if`(j>m, 1, `if`(j=m, t+1, t))), j=1..n)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..25);
-
PARI
A_x(N) = {my(x='x+O('x^N), f=x+sum(k=2,N, (x^k)/(k!)*exp(sum(j=1,k-1, (x^j)/(j!))))); concat([0],Vec(serlaplace(f)))} A_x(30) \\ John Tyler Rascoe, Sep 09 2024
Formula
E.g.f: Sum_{k>0} ((x^k)/(k!) * exp(Sum_{j=1..k-1} (x^j)/(j!))). - John Tyler Rascoe, Sep 09 2024