cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A224219 Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique.

Original entry on oeis.org

1, 1, 4, 5, 31, 82, 344, 1661, 7942, 38721, 228680, 1377026, 8529756, 56756260, 402300799, 2960135917, 22692746719, 181667760724, 1516381486766, 13135566948285, 117868982320877, 1093961278908818, 10492653292100919, 103880022098900234, 1059925027073166856
Offset: 1

Views

Author

Geoffrey Critzer, Apr 01 2013

Keywords

Comments

In other words, if the smallest block in a partition has size k then there are no other blocks in the partition with size k.

Examples

			a(4) = 5 because we have: {{1,2,3,4}}, {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}.
		

Crossrefs

Column k=1 of A372762.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember;
          `if`(i<1, 0, `if`(n=i, 1, 0)+add(b(n-i*j, i-1)*
           multinomial(n, n-i*j, i$j)/j!, j=0..(n-1)/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 07 2016
  • Mathematica
    nn=25;Drop[Range[0,nn]!CoefficientList[Series[Sum[x^k/k!Exp[Exp[x]-Sum[x^i/i!,{i,0,k}]],{k,1,nn}],{x,0,nn}],x],1]
    (* Second program: *)
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[i<1, 0, If[n==i, 1, 0] + Sum[b[n-i*j, i-1]*multinomial[n, Prepend[Array[i&, j], n-i*j]]/j!, {j, 0, (n-1)/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)

Formula

E.g.f.: Sum_{k>=1} x^k/k! * exp(exp(x) - Sum_{i=0..k} x^i/i!).

A372722 Number T(n,k) of partitions of [n] having exactly k blocks of maximal size; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 3, 0, 1, 0, 36, 15, 0, 0, 1, 0, 132, 55, 15, 0, 0, 1, 0, 596, 175, 105, 0, 0, 0, 1, 0, 2809, 805, 420, 105, 0, 0, 0, 1, 0, 14608, 4053, 1540, 945, 0, 0, 0, 0, 1, 0, 79448, 24906, 5950, 4725, 945, 0, 0, 0, 0, 1, 0, 461748, 151371, 37730, 17325, 10395, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 11 2024

Keywords

Examples

			T(4,1) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,2) = 3: 12|34, 13|24, 14|23.
T(4,3) = 0.
T(4,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
  1;
  0,     1;
  0,     1,     1;
  0,     4,     0,    1;
  0,    11,     3,    0,    1;
  0,    36,    15,    0,    0,   1;
  0,   132,    55,   15,    0,   0, 1;
  0,   596,   175,  105,    0,   0, 0, 1;
  0,  2809,   805,  420,  105,   0, 0, 0, 1;
  0, 14608,  4053, 1540,  945,   0, 0, 0, 0, 1;
  0, 79448, 24906, 5950, 4725, 945, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A372721.
Row sums give A000110.
T(2n,n) gives A001147.
T(3n,n) gives A271715.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^t,
          add(binomial(n-1, j-1)*b(n-j, max(j, m),
         `if`(j>m, 1, `if`(j=m, t+1, t))), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0$2)):
    seq(T(n), n=0..12);

Formula

Sum_{k=0..n} k * T(n,k) = A372649(n).

A372802 Number of partitions of [n] having exactly one block of maximal size and one block of minimal size (and any number of non-extremal blocks).

Original entry on oeis.org

0, 1, 1, 4, 5, 16, 82, 169, 1381, 4162, 34346, 109099, 1114610, 5041271, 39441963, 269812729, 1972727781, 14983080612, 126099739072, 989666749503, 8839669627570, 79767000198673, 725399587976669, 6979798715649335, 69812296785011890, 703554021895986941
Offset: 0

Views

Author

Alois P. Heinz, May 13 2024

Keywords

Comments

Minimal block and maximal block are identical if there is only one block.

Examples

			a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
a(5) = 16: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345.
a(8) = 1381: 12345678, 1234567|8, 1234568|7, ..., 1|27|38|456, 18|2|37|456, 1|28|37|456.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=i, 1, 0)+`if`(i signum(n)+add(binomial(n,i)*b(n-i, i+1), i=1..(n-1)/2):
    seq(a(n), n=0..30);
Showing 1-3 of 3 results.