A372782 Least number m for which there exists some positive k < m where the sum of the integers from k + 1 to m inclusive is an n-th power > 1.
2, 4, 7, 13, 22, 40, 67, 121, 202, 364, 607, 1093, 1822, 3280, 5467, 9841, 16402, 29524, 49207, 88573, 147622, 265720, 442867, 797161, 1328602, 2391484, 3985807, 7174453, 11957422, 21523360, 35872267, 64570081, 107616802, 193710244, 322850407, 581130733, 968551222, 1743392200
Offset: 1
Examples
a(2) = 4 because the sum of all integers from 3 + 1 to 4 inclusive is 4 = 2^2, a square. a(3) = 7 as we have 2 + 3 + 4 + 5 + 6 + 7 = 27 = 3^3, i.e., m = 7 and k = 1. - _David A. Corneth_, May 15 2024
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3).
Programs
-
Mathematica
LinearRecurrence[{1, 3, -3}, {2, 4, 7}, 50] (* Paolo Xausa, Jun 09 2024 *)
-
PARI
isok(m, n) = my(s = m*(m+1)/2); for (k=1, m-1, s -= k; if (ispower(s, n), return(k));); a(n) = my(m=1); while (! isok(m, n), m++); m; \\ Michel Marcus, May 16 2024
-
PARI
a(n) = { my(res, c, l, u); res = 2^n; c = 8*3^n; l = (sqrt(c) - 1)\2; u = res; for(i = l, u, if(issquare(4*(i + 1)*i + 1 - c), return(i); ) ); return(2^n) } \\ David A. Corneth, May 16 2024
Formula
a(n) = A087503(n-1) + 1.
a(n) = 3*a(n-2) + 1.
G.f.: x*(2 + 2*x - 3*x^2)/((1 - x)*(1 - 3*x^2)). - Stefano Spezia, May 18 2024
Extensions
More terms from David A. Corneth, May 16 2024
Comments