cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A372786 Number of divisors of 6n; a(n) = tau(6*n) = A000005(6*n).

Original entry on oeis.org

4, 6, 6, 8, 8, 9, 8, 10, 8, 12, 8, 12, 8, 12, 12, 12, 8, 12, 8, 16, 12, 12, 8, 15, 12, 12, 10, 16, 8, 18, 8, 14, 12, 12, 16, 16, 8, 12, 12, 20, 8, 18, 8, 16, 16, 12, 8, 18, 12, 18, 12, 16, 8, 15, 16, 20, 12, 12, 8, 24, 8, 12, 16, 16, 16, 18, 8, 16, 12, 24, 8, 20
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 6*n], {n, 1, 150}]
  • PARI
    A372786(n) = numdiv(6*n); \\ Antti Karttunen, Jul 19 2024

Formula

Sum_{k=1..n} a(k) ~ (15*n*(log(n) + 2*gamma - 1) + n*(5*log(2) + 3*log(3))) / 6, where gamma is the Euler-Mascheroni constant A001620.

A372789 Number of divisors of 9n; a(n) = tau(9*n) = A000005(9*n).

Original entry on oeis.org

3, 6, 4, 9, 6, 8, 6, 12, 5, 12, 6, 12, 6, 12, 8, 15, 6, 10, 6, 18, 8, 12, 6, 16, 9, 12, 6, 18, 6, 16, 6, 18, 8, 12, 12, 15, 6, 12, 8, 24, 6, 16, 6, 18, 10, 12, 6, 20, 9, 18, 8, 18, 6, 12, 12, 24, 8, 12, 6, 24, 6, 12, 10, 21, 12, 16, 6, 18, 8, 24, 6, 20, 6, 12, 12
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 9*n], {n, 1, 150}]
  • PARI
    A372789(n) = numdiv(9*n); \\ Antti Karttunen, Jul 19 2024

Formula

Sum_{k=1..n} a(k) ~ (21*n*(log(n) + 2*gamma - 1) + n*6*log(3)) / 9, where gamma is the Euler-Mascheroni constant A001620.

A372792 Number of divisors of 12n; a(n) = tau(12*n) = A000005(12*n).

Original entry on oeis.org

6, 8, 9, 10, 12, 12, 12, 12, 12, 16, 12, 15, 12, 16, 18, 14, 12, 16, 12, 20, 18, 16, 12, 18, 18, 16, 15, 20, 12, 24, 12, 16, 18, 16, 24, 20, 12, 16, 18, 24, 12, 24, 12, 20, 24, 16, 12, 21, 18, 24, 18, 20, 12, 20, 24, 24, 18, 16, 12, 30, 12, 16, 24, 18, 24, 24
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Comments

In general, for m>=1, Sum_{j=1..n} tau(m*j) = A018804(m) * n * log(n) + O(n).
If p is prime, then Sum_{j=1..n} tau(p*j) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 12*n], {n, 1, 150}]
  • PARI
    A372792(n) = numdiv(12*n); \\ Antti Karttunen, Jul 19 2024

Formula

Sum_{k=1..n} a(k) ~ (40*n*(log(n) + 2*gamma - 1) + n*(20*log(2) + 8*log(3))) / 12, where gamma is the Euler-Mascheroni constant A001620.

A372785 a(n) = tau(5*n) = A000005(5*n).

Original entry on oeis.org

2, 4, 4, 6, 3, 8, 4, 8, 6, 6, 4, 12, 4, 8, 6, 10, 4, 12, 4, 9, 8, 8, 4, 16, 4, 8, 8, 12, 4, 12, 4, 12, 8, 8, 6, 18, 4, 8, 8, 12, 4, 16, 4, 12, 9, 8, 4, 20, 6, 8, 8, 12, 4, 16, 6, 16, 8, 8, 4, 18, 4, 8, 12, 14, 6, 16, 4, 12, 8, 12, 4, 24, 4, 8, 8, 12, 8, 16, 4, 15, 10, 8, 4, 24, 6, 8, 8, 16, 4, 18, 8, 12, 8, 8, 6
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 5*n], {n, 1, 150}]
  • PARI
    A372785(n) = numdiv(5*n); \\ Antti Karttunen, Jan 13 2025

Formula

Sum_{k=1..n} a(k) ~ (9*n*(log(n) + 2*gamma - 1) + n*log(5)) / 5, where gamma is the Euler-Mascheroni constant A001620.

Extensions

More terms from Antti Karttunen, Jan 13 2025

A372787 a(n) = tau(7*n) = A000005(7*n).

Original entry on oeis.org

2, 4, 4, 6, 4, 8, 3, 8, 6, 8, 4, 12, 4, 6, 8, 10, 4, 12, 4, 12, 6, 8, 4, 16, 6, 8, 8, 9, 4, 16, 4, 12, 8, 8, 6, 18, 4, 8, 8, 16, 4, 12, 4, 12, 12, 8, 4, 20, 4, 12, 8, 12, 4, 16, 8, 12, 8, 8, 4, 24, 4, 8, 9, 14, 8, 16, 4, 12, 8, 12, 4, 24, 4, 8, 12, 12, 6, 16, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 7*n], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ (13*n*(log(n) + 2*gamma - 1) + n*log(7)) / 7, where gamma is the Euler-Mascheroni constant A001620.

A372788 a(n) = tau(8*n) = A000005(8*n).

Original entry on oeis.org

4, 5, 8, 6, 8, 10, 8, 7, 12, 10, 8, 12, 8, 10, 16, 8, 8, 15, 8, 12, 16, 10, 8, 14, 12, 10, 16, 12, 8, 20, 8, 9, 16, 10, 16, 18, 8, 10, 16, 14, 8, 20, 8, 12, 24, 10, 8, 16, 12, 15, 16, 12, 8, 20, 16, 14, 16, 10, 8, 24, 8, 10, 24, 10, 16, 20, 8, 12, 16, 20, 8, 21
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 8*n], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ (20*n*(log(n) + 2*gamma - 1) + n*12*log(2)) / 8, where gamma is the Euler-Mascheroni constant A001620.

A372790 a(n) = tau(10*n) = A000005(10*n).

Original entry on oeis.org

4, 6, 8, 8, 6, 12, 8, 10, 12, 9, 8, 16, 8, 12, 12, 12, 8, 18, 8, 12, 16, 12, 8, 20, 8, 12, 16, 16, 8, 18, 8, 14, 16, 12, 12, 24, 8, 12, 16, 15, 8, 24, 8, 16, 18, 12, 8, 24, 12, 12, 16, 16, 8, 24, 12, 20, 16, 12, 8, 24, 8, 12, 24, 16, 12, 24, 8, 16, 16, 18, 8, 30
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 10*n], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ (27*n*(log(n) + 2*gamma - 1) + n*(9*log(2) + 3*log(5))) / 10, where gamma is the Euler-Mascheroni constant A001620.

A372791 a(n) = tau(11*n) = A000005(11*n).

Original entry on oeis.org

2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 3, 12, 4, 8, 8, 10, 4, 12, 4, 12, 8, 6, 4, 16, 6, 8, 8, 12, 4, 16, 4, 12, 6, 8, 8, 18, 4, 8, 8, 16, 4, 16, 4, 9, 12, 8, 4, 20, 6, 12, 8, 12, 4, 16, 6, 16, 8, 8, 4, 24, 4, 8, 12, 14, 8, 12, 4, 12, 8, 16, 4, 24, 4, 8, 12, 12, 6, 16
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 11*n], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ (21*n*(log(n) + 2*gamma - 1) + n*log(11)) / 11, where gamma is the Euler-Mascheroni constant A001620.

A349693 Dirichlet convolution of the ruler function (A001511) with itself.

Original entry on oeis.org

1, 4, 2, 10, 2, 8, 2, 20, 3, 8, 2, 20, 2, 8, 4, 35, 2, 12, 2, 20, 4, 8, 2, 40, 3, 8, 4, 20, 2, 16, 2, 56, 4, 8, 4, 30, 2, 8, 4, 40, 2, 16, 2, 20, 6, 8, 2, 70, 3, 12, 4, 20, 2, 16, 4, 40, 4, 8, 2, 40, 2, 8, 6, 84, 4, 16, 2, 20, 4, 16, 2, 60, 2, 8, 6, 20, 4, 16, 2, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Comments

Dirichlet convolution of A000005 with A104117. - Ridouane Oudra, Jul 23 2025

Crossrefs

Programs

  • Maple
    a:= n-> (f-> add(f(d)*f(n/d), d=numtheory[divisors](n)))(k-> padic[ordp](2*k, 2)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Nov 25 2021
  • Mathematica
    Table[Sum[IntegerExponent[2 d, 2] IntegerExponent[2 n/d, 2], {d, Divisors[n]}], {n, 1, 80}]
    f[p_, e_] := If[p == 2, Binomial[e + 3, 3], e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 80] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A001511(n) = (1+valuation(n,2));
    A349693(n) = sumdiv(n,d,A001511(n/d)*A001511(d)); \\ Antti Karttunen, Nov 25 2021
    
  • Python
    from sympy import divisor_count
    def A349693(n): return divisor_count(n)*(m:=(n&-n).bit_length()+1)*(m+1)//6 # Chai Wah Wu, Jul 13 2022

Formula

Dirichlet g.f.: zeta(s)^2 * 4^s / (2^s-1)^2.
a(n) = Sum_{d|n} A001511(d) * A001511(n/d).
a(n) = Sum_{d|n} A000217(A001511(d)).
Multiplicative with a(p^e) = binomial(e+3,3) if p = 2 and e+1 otherwise. - Amiram Eldar, Nov 25 2021
Sum_{k=1..n} a(k) ~ 4*n*(log(n) - 1 + 2*gamma - 2*log(2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Nov 26 2021
From Ridouane Oudra, Jul 23 2025: (Start)
a(n) = Sum_{i=0..A007814(n)} (i+1)*tau(n/2^i).
a(n) = Sum_{d|n} A115364(d).
a(n) = (1/6)*A090739(n)*A085058(n-1)*A000005(n).
a(n) = (1/6)*A001511(n)*A090739(n)*A099777(n).
a(n) = (1/3)*A115364(n)*A372784(n).
a(n) = A001227(n)*A000292(A001511(n)).
a(2*n+1) = tau(2*n+1).
a(2^k*(2*n+1)) = binomial(k+3, 3)*tau(2*n+1), for k, n >= 0. (End)

A372793 Sequence related to the asymptotic expansion of Sum_{k=1..n} tau(m*k).

Original entry on oeis.org

1, 2, 3, 16, 5, 864, 7, 4096, 729, 64000, 11, 6879707136, 13, 2809856, 61509375, 4294967296, 17, 812479653347328, 19, 26843545600000000, 26795786661, 2791309312, 23, 4019988717840603673710821376, 9765625, 73719087104, 7625597484987, 25962355635465062711296, 29
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Comments

For m>=1, Sum_{k=1..n} tau(m*k) = A018804(m) * n * log(n) + O(n).
If p is prime, then Sum_{k=1..n} tau(p*k) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.

Examples

			Sum_{k=1..n} tau(4*k) ~ (8*n*(log(n) + 2*gamma - 1) + n*4*log(2)) / 4, a(4) = exp(4*log(2)) = 16.
Sum_{k=1..n} tau(6*k) ~ (15*n*(log(n) + 2*gamma - 1) + n*(5*log(2) + 3*log(3))) / 6, a(6) = exp(5*log(2) + 3*log(3)) = 864.
Sum_{k=1..n} tau(8*k) ~ (20*n*(log(n) + 2*gamma - 1) + n*12*log(2)) / 8, a(8) = exp(12*log(2)) = 4096.
Sum_{k=1..n} tau(9*k) ~ (21*n*(log(n) + 2*gamma - 1) + n*6*log(3)) / 9, a(9) = exp(6*log(3)) = 729.
Sum_{k=1..n} tau(10*k) ~ (27*n*(log(n) + 2*gamma - 1) + n*(9*log(2) + 3*log(5))) / 10, a(10) = exp(9*log(2) + 3*log(5)) = 64000.
Sum_{k=1..n} tau(12*k) ~ (40*n*(log(n) + 2*gamma - 1) + n*(20*log(2) + 8*log(3))) / 12, a(12) = exp(20*log(2) + 8*log(3)) = 6879707136.
		

Crossrefs

Cf. A000005 (m=1), A099777 (m=2), A372713 (m=3), A372784 (m=4), A372785 (m=5), A372786 (m=6), A372787 (m=7), A372788 (m=8), A372789 (m=9), A372790 (m=10), A372791 (m=11), A372792 (m=12).

Formula

Sum_{k=1..n} tau(m*k) ~ A018804(m) * n * (log(n) - 1 + 2*gamma)/m + n*log(a(m))/m.
a(m) = exp(limit_{n->oo} (m * (Sum_{k=1..n} tau(m*k)) - A018804(m)*n*(log(n) - 1 + 2*gamma))/n).
If p is prime, then a(p) = p.
If p is prime, then a(p^k) = p^(k*p^(k-1)).
If p and q are distinct primes, then a(p*q) = p^(2*q-1) * q^(2*p-1).
Showing 1-10 of 10 results.