cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373194 Numbers k such that phi(k) is a Lucas number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 19, 27, 38, 54, 2049, 2732, 4098, 5779, 11558, 36717, 48956, 73434, 21994424093409, 29325898791212, 43988848186818, 439894502304193355596420713117, 586526003072257807461894284156, 879789004608386711192841426234, 56570478046795035524653081529155199270281, 56570478046795035532692004624509431078281
Offset: 1

Views

Author

DarĂ­o Clavijo, May 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    lucasQ[n_] := Or @@ (IntegerQ[Sqrt[#]] & /@ (5*n^2 + 20*{-1, 1})); Select[Range[10^4], lucasQ[EulerPhi[#]] &] (* Amiram Eldar, May 27 2024 *)
  • PARI
    isok(k) = islucas(eulerphi(k)); \\ using islucas from A102460 \\ Michel Marcus, May 27 2024
    
  • PARI
    \\ read Max Alekseyev's invphi.gp
    a373194(uptoNLucas) = my(A=List()); for(n=0, uptoNLucas, my(L = invphi(fibonacci(n+1) + fibonacci(n-1))); if(#L, for(k=1, #L, listput(A,L[k])))); Set(A);
    a373194(150) \\ Hugo Pfoertner, Jun 10 2024
  • Python
    from sympy.ntheory.primetest import is_square
    from sympy import totient
    islucas = lambda n: is_square(5*n*n - 20) or is_square(5*n*n + 20)
    print([n for n in range(1,10**4) if islucas(totient(n))])
    

Extensions

a(18)-a(21) from Amiram Eldar, May 27 2024
a(22) onwards from Hugo Pfoertner, May 27 2024