cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373216 Expansion of Sum_{k>=0} x^(6^k) / (1 - x^(6^k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Seiichi Manyama, May 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = valuation(n, 6)+1;

Formula

G.f. A(x) satisfies A(x) = x/(1 - x) + A(x^6).
a(6*n+1) = a(6*n+2) = ... = (6*n+5) = 1 and a(6*n+6) = 1 + a(n+1) for n >= 0.
a(n) = A122841(n) + 1.
G.f.: Sum_{i>=1, j>=0} x^(i*6^j). - Seiichi Manyama, Mar 23 2025
a(n) = A122841(6*n). - R. J. Mathar, Jun 28 2025