cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A373297 Euler transform of A373216.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 16, 24, 33, 47, 63, 90, 118, 161, 212, 283, 367, 487, 624, 812, 1037, 1332, 1685, 2152, 2700, 3409, 4259, 5333, 6617, 8242, 10165, 12568, 15436, 18970, 23178, 28360, 34487, 41970, 50850, 61599, 74322, 89696, 107809, 129572, 155235, 185881, 221936
Offset: 0

Views

Author

Seiichi Manyama, May 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(valuation(k, 6)+1)))

Formula

G.f.: A(x) = 1/Product_{i>=1, j>=0} (1 - x^(i * 6^j)).
Let A(x) be the g.f. of this sequence, and P(x) be the g.f. of A000041, then P(x) = A(x)/A(x^6).

A051064 3^a(n) exactly divides 3n. Or, 3-adic valuation of 3n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Keywords

Comments

a(n) is the Hamming distance between n and n-1 in ternary representation. - Philippe Deléham, Mar 29 2004
3^a(n) divides 4^n-1. - Benoit Cloitre, Oct 25 2004
Generalized Ruler Function for k=3. - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
a(A007417(n)) is odd and a(A145204(n)) is even. - Reinhard Zumkeller, May 23 2013
First n terms comprise least cubefree word of length n using positive integers, where "cubefree" means that the word contains no three consecutive identical subwords; e.g., 1 contains no cube; 11 contains no cube; 111 does but 112 does not; ... 1,1,2,1,1,2,1,1,1 does, and 1,1,2,1,1,2,1,1,2 does, but 1,1,2,1,1,2,1,1,3 does not, etc. - Clark Kimberling, Sep 10 2013
The sequence is invariant under the "lower trim" operator: remove all ones, and subtract one from each remaining term. - Franklin T. Adams-Watters, May 25 2017
a(n) is the dimension in which the coordinates of the vertices n-1 and n differ in the ternary reflected Gray code. - Arie Bos, Jul 12 2023
The number of powers of 3 that divide n. - Amiram Eldar, Mar 29 2025

Examples

			3^2 | 3*6 = 18, so a(6) = 2.
		

References

  • Letter from Gary W. Adamson to N. J. A. Sloane concerning Prouhet-Thue-Morse sequence, Nov. 11, 1999.

Crossrefs

Cf. A007949.
Partial sums give A004128.
Cf. A254046.

Programs

  • Haskell
    a051064 = (+ 1) . length .
                      takeWhile (== 3) . dropWhile (== 2) . a027746_row
    -- Reinhard Zumkeller, May 23 2013
    
  • Maple
    seq(1+padic:-ordp(n,3), n=1..100); # Robert Israel, Aug 07 2014
  • Mathematica
    Nest[ Function[ l, {Flatten[(l /. {1 -> {1, 1, 2}, 2 -> {1, 1, 3}, 3 -> {1, 1, 4}, 4 -> {1, 1, 5}})]}], {1}, 5] (* Robert G. Wilson v, Mar 03 2005 *)
    Table[ IntegerExponent[3n, 3], {n, 1, 105}] (* Jean-François Alcover, Oct 10 2011 *)
  • PARI
    a(n)=if(n<1,0,1+valuation(n,3))
    
  • Python
    def A051064(n):
        c = 1
        a, b = divmod(n,3)
        while b == 0:
            a, b = divmod(a,3)
            c += 1
        return c # Chai Wah Wu, Apr 18 2022

Formula

a(n) = A007949(n) + 1 = A004128(n) - A004128(n-1).
Multiplicative with a(p^e) = e+1 if p = 3; 1 if p <> 3. - Vladeta Jovovic, Aug 24 2002
G.f.: Sum_{k>=0} x^3^k/(1-x^3^k). - Ralf Stephan, Apr 12 2002
Fixed point of the morphism: 1 -> 112; 2 -> 113; 3 -> 114; 4 -> 115; ...; starting from a(1) = 1. a(3n+1) = a(3n+2) = 1; a(3n) = 1 + a(n). - Philippe Deléham, Mar 29 2004
a(n) = (-1)*Sum_{d divides n} mu(3d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/(1-1/3^s). - R. J. Mathar, Jun 13 2011
a(n) = (1/2)*(3 - A053735(n) + A053735(n-1)) for n >= 1. - Tom Edgar, Aug 06 2014
a(n) = A007949(3n). - Cyril Damamme, Aug 04 2015
a(2n) = a(n), a(2n-1) = A254046(n). - Cyril Damamme, Aug 04 2015
G.f. A(x) satisfies: A(x) = A(x^3) + x/(1 - x). - Ilya Gutkovskiy, May 03 2019
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/2. - Amiram Eldar, Sep 11 2020 [corrected by Vaclav Kotesovec, Jun 25 2024, see also A004128]
a(n) = tau(n)/(tau(3*n) - tau(n)), where tau(n) = A000005(n). - Peter Bala, Jan 06 2021
G.f.: Sum_{i>=1, j>=0} x^(i*3^j). - Seiichi Manyama, Mar 23 2025
Conjecture: a(n) = A007949(A000045(4*n)), all other 3-adic quadrisections A007949(A000045(.))=0. [Lengyel?]. - R. J. Mathar, Jun 28 2025

Extensions

More terms from James Sellers, Dec 11 1999
More terms from Vladeta Jovovic, Aug 24 2002

A055457 5^a(n) exactly divides 5n. Or, 5-adic valuation of 5n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Alford Arnold, Jun 25 2000

Keywords

Comments

More generally, consider the sequence defined by p^a(n) exactly divides p*n. For p = 3 we have A051064 and for p = 2 we have A001511.
The number of powers of 5 that divide n. - Amiram Eldar, Mar 29 2025

Examples

			a(5) = 2 since 5^2 exactly divides 5 times 5;
a(25) = 3 since 5^3 exactly divides 5 times 25;
a(125) = 4 since 5^4 exactly divides 5 times 125.
		

Crossrefs

Cf. A007949, A112765, A191610 (partial sums).

Programs

  • Maple
    seq(padic:-ordp(5*n,5), n=1..1000); # Robert Israel, Dec 07 2015
  • Mathematica
    max = 1000; s = (1/x)*Sum[x^(5^k)/(1-x^5^k), {k, 0, Log[5, max] // Ceiling }] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 04 2015 *)
    Table[IntegerExponent[n, 5] + 1, {n, 1, 100}] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=-sumdiv(n,d,moebius(5*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
    
  • PARI
    a(n)=valuation(5*n,5) \\ Anders Hellström, Dec 04 2015
    
  • Python
    def A055457(n):
        c = 1
        while not (a:=divmod(n,5))[1]:
            c += 1
            n = a[0]
        return c # Chai Wah Wu, Feb 28 2025

Formula

G.f.: Sum_{k>=0} x^(5^k)/(1-x^5^k). - Ralf Stephan, Apr 12 2002
Multiplicative with a(p^e) = e+1 if p = 5, 1 otherwise.
a(n) = -Sum_{d|n} mu(5d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/(1-1/5^s). - R. J. Mathar, Feb 09 2011
a(n) = A112765(5n). - R. J. Mathar, Jul 17 2012
a(5n) = 1 + a(n). a(5n+k) = 1 for k = 1..4. - Robert Israel, Dec 07 2015
G.f. satisfies A(x^5) = A(x) - x/(1-x). - Robert Israel, Dec 08 2015
a(n) = A112765(n) + 1. - Amiram Eldar, Sep 21 2020
Sum_{k=1..n} a(k) ~ 5*n/4. - Vaclav Kotesovec, Sep 21 2020
G.f.: Sum_{i>=1, j>=0} x^(i*5^j). - Seiichi Manyama, Mar 23 2025

A373217 Expansion of Sum_{k>=0} x^(7^k) / (1 - x^(7^k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Seiichi Manyama, May 28 2024

Keywords

Comments

The number of powers of 7 that divide n. - Amiram Eldar, Mar 29 2025

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + IntegerExponent[n, 7]; Array[a, 100] (* Amiram Eldar, May 29 2024 *)
  • PARI
    a(n) = valuation(n, 7)+1;

Formula

G.f. A(x) satisfies A(x) = x/(1 - x) + A(x^7).
a(7*n+1) = a(7*n+2) = ... = (7*n+6) = 1 and a(7*n+7) = 1 + a(n+1) for n >= 0.
Multiplicative with a(p^e) = e+1 if p = 7, 1 otherwise.
a(n) = -Sum_{d|n} mu(7*d) * tau(n/d).
a(n) = A214411(n) + 1.
From Amiram Eldar, May 29 2024: (Start)
Dirichlet g.f.: (7^s/(7^s-1)) * zeta(s).
Sum_{k=1..n} a(k) ~ (7/6) * n. (End)
G.f.: Sum_{i>=1, j>=0} x^(i*7^j). - Seiichi Manyama, Mar 23 2025
a(n) = A214411(7*n). - R. J. Mathar, Jun 28 2025

A373220 Expansion of Product_{i>=1, j>=0} (1 + x^(i * 6^j)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 12, 15, 20, 24, 29, 37, 44, 53, 67, 79, 94, 115, 135, 160, 193, 226, 265, 315, 367, 428, 505, 585, 678, 792, 913, 1054, 1225, 1406, 1614, 1862, 2129, 2436, 2797, 3187, 3630, 4147, 4709, 5347, 6084, 6887, 7793, 8832, 9968, 11247, 12706, 14301, 16089, 18116, 20337
Offset: 0

Views

Author

Seiichi Manyama, May 28 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=60, x='x+O('x^N)); Vec(prod(k=1, N, (1+x^k)^(valuation(k, 6)+1)))

Formula

G.f.: Product_{k>=1} (1 + x^k)^A373216(k).
Let A(x) be the g.f. of this sequence, and B(x) be the g.f. of A000009, then B(x) = A(x)/A(x^6).

A373282 Expansion of Sum_{k>=0} x^(6^k) / (1 - 6*x^(6^k)).

Original entry on oeis.org

1, 6, 36, 216, 1296, 7777, 46656, 279936, 1679616, 10077696, 60466176, 362797062, 2176782336, 13060694016, 78364164096, 470184984576, 2821109907456, 16926659444772, 101559956668416, 609359740010496, 3656158440062976, 21936950640377856
Offset: 1

Views

Author

Seiichi Manyama, May 30 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - 6*x) + A(x^6).
If n == 0 (mod 6), a(n) = 6^n + a(n/6) otherwise a(n) = 6^n.

A382378 Expansion of 1/( 1 - Sum_{k>=0} x^(6^k) / (1 - x^(6^k)) ).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 33, 66, 133, 268, 540, 1088, 2194, 4421, 8910, 17957, 36190, 72936, 146996, 296252, 597061, 1203306, 2425121, 4887544, 9850272, 19852060, 40009486, 80634401, 162509126, 327517977, 660073866, 1330301036, 2681064864, 5403370072, 10889855193, 21947218962
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A373216(k) * a(n-k).
G.f.: 1/(1 - Sum_{i>=1, j>=0} x^(i*6^j)).
G.f. A(x) satisfies A(x) = 1/( 1/A(x^6) - x/(1-x) ).

A373397 Expansion of Sum_{k>=0} x^(6^k) / (1 - x^(6^k))^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 11, 14, 13, 14, 15, 16, 17, 21, 19, 20, 21, 22, 23, 28, 25, 26, 27, 28, 29, 35, 31, 32, 33, 34, 35, 43, 37, 38, 39, 40, 41, 49, 43, 44, 45, 46, 47, 56, 49, 50, 51, 52, 53, 63, 55, 56, 57, 58, 59, 70, 61, 62, 63, 64, 65, 77, 67, 68, 69, 70, 71, 86, 73, 74, 75, 76, 77, 91
Offset: 1

Views

Author

Seiichi Manyama, Jun 04 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - x)^2 + A(x^6).
If n == 0 (mod 6), a(n) = n + a(n/6) otherwise a(n) = n.
Showing 1-8 of 8 results.