cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373435 Iterate the function x <- phi(sigma(x)). The sequence lists the smaller member of cycles of length 2.

Original entry on oeis.org

4, 48, 72, 432, 1728, 10368, 184320, 1658880, 6220800, 10222080, 12856320000
Offset: 1

Views

Author

Jud McCranie, Jun 06 2024

Keywords

Comments

A cycle of length 2 also starts at 3852635996160. 3852635996160, 4869303828480, and 23971865863680 are also terms in the sequence. The sequence is complete through 10^13. - Jud McCranie, Sep 14 2024
166144927334400, 273145872384000, 1904394240000000,2779315686604800, 3644668394864640, 32729712349340160, 48693038284800000, 86790832128000000, 382404221337600000, 2684203735449600000, 5246585916751872000, 6169596402106368000, 13477567109529600000, 22998695842676736000, 38039819551128944640, 90555444080640000000, 102336861080974786560, 130026464870400000000, 222489728778240000000, 499064687988572160000, 2927044657152000000000, 19697331219625672704000, 23473340597403648000000, 73262977439150112768000, 1362680919097344000000000, 14128156119169341849600000, 16615689577928023080960000, 53129683677797469388800000, 6512790537509850316800000000, 125020570798295875584000000000, 201603700212193346715648000000, 1622429777898127409283072000000, 2631371767787268127693209600000, 71803515676046099742720000000000, 105852742809627160240717824000000000, 5528044915051901005564508897280000000, 15042880212263420006968149934080000000, 2013381648407800940932784726212608000000, 67868597277402193009117012867153920000000, 17285817653863442809402049534361600000000000 are also in this sequence. - Richard R. Forberg, Oct 27 2024

Examples

			phi(sigma(4)) = 6 and phi(sigma(6)) = 4, so 4 (the smallest term) is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], # == EulerPhi[DivisorSigma[1,EulerPhi[DivisorSigma[1,#]]]] && # < EulerPhi[DivisorSigma[1,#]]&] (* Stefano Spezia, Jun 07 2024 *)
  • PARI
    isok(x) = my(y = eulerphi(sigma(x))); if (y > x, x == eulerphi(sigma(y))); \\ Michel Marcus, Jun 06 2024