A373504 Triangular array: row n gives the coefficients T(n,k) of powers x^(2k) in the series expansion of ((b^n + b^(-n))/2)^2, where b = x + sqrt(x^2 + 1).
1, 1, 1, 1, 4, 4, 1, 9, 24, 16, 1, 16, 80, 128, 64, 1, 25, 200, 560, 640, 256, 1, 36, 420, 1792, 3456, 3072, 1024, 1, 49, 784, 4704, 13440, 19712, 14336, 4096, 1, 64, 1344, 10752, 42240, 90112, 106496, 65536, 16384, 1, 81, 2160, 22176, 114048, 329472, 559104, 552960, 294912, 65536
Offset: 0
Examples
First 8 rows: 1 1 1 1 4 4 1 9 24 16 1 16 80 128 64 1 25 200 560 640 256 1 36 420 1792 3456 3072 1024 1 49 784 4704 13440 19612 14336 4096 The 4th polynomial is 1 + 9 x^2 + 24 x^4 + 16 x^6.
Crossrefs
Programs
-
Maple
p:= proc(n) option remember; (b-> series( ((b^n+b^(-n))/2)^2, x, 2*n+1))(x+sqrt(x^2+1)) end: T:= (n, k)-> coeff(p(n), x, 2*k): seq(seq(T(n,k), k=0..n), n=0..10); # Alois P. Heinz, Aug 03 2024
-
Mathematica
t[n_] := ((x + Sqrt[x^2 + 1])^n + (x + Sqrt[x^2 + 1])^(-n))/2 u = Expand[Table[FullSimplify[Expand[t[n]]], {n, 0, 10}]^2] v = Column[CoefficientList[u, x^2]] (* array *) Flatten[v] (* sequence *) T[n_, k_] := If[k==0, 1, 4^(k - 1)*(2*Binomial[n + k, 2*k] - Binomial[n + k -1, 2*k -1])]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Aug 11 2024 *)
Formula
T(n, k) = if (k=0) then 1, otherwise 4^(k - 1)*(2*binomial(n + k, 2*k) - binomial(n + k - 1, 2*k - 1)). - Detlef Meya, Aug 11 2024
Comments