cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373504 Triangular array: row n gives the coefficients T(n,k) of powers x^(2k) in the series expansion of ((b^n + b^(-n))/2)^2, where b = x + sqrt(x^2 + 1).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 9, 24, 16, 1, 16, 80, 128, 64, 1, 25, 200, 560, 640, 256, 1, 36, 420, 1792, 3456, 3072, 1024, 1, 49, 784, 4704, 13440, 19712, 14336, 4096, 1, 64, 1344, 10752, 42240, 90112, 106496, 65536, 16384, 1, 81, 2160, 22176, 114048, 329472, 559104, 552960, 294912, 65536
Offset: 0

Views

Author

Clark Kimberling, Aug 03 2024

Keywords

Comments

Related to Chebyshev polynomials of the first kind; see A123588.

Examples

			First 8 rows:
  1
  1    1
  1    4     4
  1    9    24     16
  1   16    80    128     64
  1   25   200    560    640    256
  1   36   420   1792   3456   3072   1024
  1   49   784   4704  13440  19612  14336  4096
The 4th polynomial is 1 + 9 x^2 + 24 x^4 + 16 x^6.
		

Crossrefs

Cf. A000012 (col 0), A000290 (col 1), A002415 ((1/4)*col(2)), A112742 (col 2), A000302 (T(n,n)), A123588, A008310.
Row sums give A055997(n+1).
Triangle without column 0 gives A334009.

Programs

  • Maple
    p:= proc(n) option remember; (b-> series(
          ((b^n+b^(-n))/2)^2, x, 2*n+1))(x+sqrt(x^2+1))
        end:
    T:= (n, k)-> coeff(p(n), x, 2*k):
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Aug 03 2024
  • Mathematica
    t[n_] := ((x + Sqrt[x^2 + 1])^n + (x + Sqrt[x^2 + 1])^(-n))/2
    u = Expand[Table[FullSimplify[Expand[t[n]]], {n, 0, 10}]^2]
    v = Column[CoefficientList[u, x^2]] (* array *)
    Flatten[v] (* sequence *)
    T[n_, k_] := If[k==0, 1, 4^(k - 1)*(2*Binomial[n + k, 2*k] - Binomial[n + k -1, 2*k -1])]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Aug 11 2024 *)

Formula

T(n, k) = if (k=0) then 1, otherwise 4^(k - 1)*(2*binomial(n + k, 2*k) - binomial(n + k - 1, 2*k - 1)). - Detlef Meya, Aug 11 2024