A374022 a(n) is the cardinality of the set containing all noninteger rationals of the form m/2^(bigomega(m) - 1) <= n.
0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 5, 6, 7, 7, 7, 9, 11, 12, 13, 14, 14, 14, 15, 16, 18, 20, 21, 22, 24, 25, 25, 26, 27, 27, 29, 30, 31, 33, 35, 36, 36, 37, 40, 43, 43, 44, 46, 47, 48, 48, 48, 50, 50, 51, 51, 54, 55, 58, 58, 60, 61, 64, 64, 66, 68, 71, 72, 72, 74
Offset: 1
Keywords
Examples
a(5) = 1 = card{9/2}. a(7) = 2 = card{9/2, 27/4}. a(8) = 3 = card{9/2, 27/4, 15/2}. a(11) = 5 = card{9/2, 27/4, 15/2, 81/8, 21/2}. a(12) = 6 = card{9/2, 27/4, 15/2, 81/8, 21/2, 45/4}. a(13) = 7 = card{9/2, 27/4, 15/2, 81/8, 21/2, 45/4, 25/2}. a(16) = 9 = card{9/2, 27/4, 15/2, 81/8, 21/2, 45/4, 25/2, 243/16, 63/4}. It appears that Pi*x_n - n/2 + sqrt(n)/2 ~ A002410(n), where x_n is the n-th term of the above vector. The numerators of the above vector elements are A374074(n). The denominators of the above vector elements are 2^(bigomega(A374074(n)) - 1).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 100; k[n_] := Max[1, Floor[Log[3/2, n/2]]]; m[n_] := n 2^(k[n] - 1); PrimePiK = Table[0, Floor[Log[2, m[z]]], m[z]]; For[i = 2, i <= m[z], i++, PrimePiK[[PrimeOmega[i], i]] = 1] PrimePiK = Accumulate /@ PrimePiK; a = Table[PrimePiK[[k[n], m[n]]] - PrimePi[n], {n, z}] (*sequence*) x = Union@Select[Table[i/2^(PrimeOmega[i] - 1), {i, 1, m[z], 2}], # <= z && Mod[#,1] != 0 &] (*set*)
-
PARI
nap(n, k) = sum(i=1, n, bigomega(i)==k); a(n) = my(k=max(1, floor(log(n/2)/(log(3)-log(2))))); nap(n*2^(k-1), k) - primepi(n); \\ Michel Marcus, Jun 27 2024
-
Python
from math import isqrt, prod from sympy import primepi, primerange, integer_nthroot def A374022(n): if n<=4: return 0 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) k = 1 while 3**k<(r:=n<
Chai Wah Wu, Dec 03 2024