cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374158 a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 3*y^2 = k.

Original entry on oeis.org

0, 4, 91, 28, 196, 31213, 364, 9604, 53599, 2548, 470596
Offset: 0

Views

Author

Seiichi Manyama, Jun 29 2024

Keywords

Comments

a(n) is the smallest nonnegative k such that A092573(k) = n.
a(11) <= 3672178237.
a(12) = 6916.
a(13) = 33124.
a(14) = 29059303.
a(15) = 124852.
a(16) = 1983163.
a(18) = 48412.
a(20) = 18384457.
a(21) = 6117748.
a(22) = 1623076.
a(24) = 214396.
a(27) = 629356.
a(28) = 900838393.
a(31) = 79530724.
a(32) = 85276009.
a(37) = 274299844.
a(42) = 116237212.
a(60) = 73537828.
a(67) = 585930436.
From Chai Wah Wu, Jun 29-30 2024: (Start)
a(30) = 2372188.
a(36) = 1500772.
a(40) = 11957764.
a(45) = 30838444.
a(48) = 7932652.
a(54) = 19510036.
a(72) = 55528564.
(End)

Examples

			   n | a(n)
-----+---------------------------
   1 |      4 = 2^2.
   2 |     91 = 7 * 13.
   3 |     28 = 2^2 * 7.
   4 |    196 = 2^2 * 7^2.
   5 |  31213 = 7^4 * 13.
   6 |    364 = 2^2 * 7 * 13.
   7 |   9604 = 2^2 * 7^4.
   8 |  53599 = 7 * 13 * 19 * 31.
   9 |   2548 = 2^2 * 7^2 * 13.
  10 | 470596 = 2^2 * 7^6.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy.abc import x,y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A374158(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+3*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 29 2024