cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374384 a(n) = floor(Sum_{k=n^3..(n+1)^3} k^(1/3)).

Original entry on oeis.org

1, 12, 51, 134, 281, 508, 835, 1278, 1857, 2588, 3491, 4582, 5881, 7404, 9171, 11198, 13505, 16108, 19027, 22278, 25881, 29852, 34211, 38974, 44161, 49788, 55875, 62438, 69497, 77068, 85171, 93822, 103041, 112844, 123251, 134278, 145945, 158268, 171267, 184958, 199361
Offset: 0

Views

Author

Amrit Awasthi, Jul 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sum[(n^3+k)^(1/3),{k,0,3n^2+3n+1}]],{n,0,40}] (* Stefano Spezia, Jul 07 2024 *)
  • PARI
    a(n) = 3*n^3+9*n^2\2+4*n+1; \\ Michel Marcus, Jul 09 2024

Formula

a(n) = floor(3*n^3+9*n^2/2+4*n+1).
a(2*n) = 24*n^3 + 18*n^2 + 8*n + 1.
a(2*n-1) = 24*n^3-18*n^2+8*n-2 for n > 0.
a(2*n) = A248575(2*n) + 4*n + 1.
a(2*n-1) = A248575(2*n-1) + 4*n - 2.
From Stefano Spezia, Jul 09 2024: (Start)
G.f.: (1 + 9*x + 17*x^2 + 7*x^3 + 2*x^3)/((1 - x)^4*(1 + x)).
E.g.f.: exp(x)*(1 + 11*x + 14*x^2 + 3*x^3). (End)