A374392 a(n) is the least number k such that k, k + 2 and k + 4 all have exactly n prime factors, counted with multiplicity.
3, 91, 66, 340, 2548, 30940, 67228, 6290620, 81818748, 1336727934, 19729482496, 358398854656, 1934923637500, 115877891562496
Offset: 1
Examples
a(3) = 66 because 66 = 2 * 3 * 11, 68 = 2^2 * 17 and 70 = 2 * 5 * 7 all have 3 prime factors, counted with multiplicity, and 66 is the least number that works.
Programs
-
Maple
f:= proc(m) uses priqueue; local S, pq, T, v, TP, q, p, j; S:= {-10,-9,-8,-7}; initialize(pq); insert([-2^m,2$m],pq); do T:= extract(pq); v:= -T[1]; if {v-2,v-4} subset S then return v-4 fi; S:= (S minus {min(S)}) union {v}; q:= T[-1]; p:= nextprime(q); for j from m+1 to 2 by -1 do if T[j] <> q then break fi; TP:= [T[1]*(p/q)^(m+2-j),op(T[2..j-1]),p$(m+2-j)]; insert(TP, pq) od od; end proc: map(f, [$1..11]);
Extensions
a(12)-a(14) from Martin Ehrenstein, Jul 11 2024
Comments