A374454 Expansion of o.g.f. 1/(1 - 4*x - 6*x^2 - 4*x^3 - x^4).
1, 4, 22, 116, 613, 3240, 17124, 90504, 478333, 2528092, 13361506, 70618412, 373233385, 1972618128, 10425707976, 55102092624, 291226324249, 1539193302772, 8134965235054, 42995028146468, 227237903531533, 1201000837247928, 6347545848001836, 33548135057767512
Offset: 0
Examples
The following table gives the type of composition, the number of such compositions, and the total number of compositions of n = 6 using parts of size at most 4 where there are binomial(4,i) types of i (ie. 4 types of 1, 6 types of 2, 4 types of 3 and 1 type of 4): Type Number Total 4+2 2 12 3+3 1 16 4+1+1 3 48 3+2+1 6 576 2+2+2 1 216 3+1+1+1 4 1024 2+2+1+1 6 3456 2+1+1+1+1 5 7680 1+1+1+1+1+1 1 4096, adding to a(6) = 17124.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,6,4,1).
Programs
-
Mathematica
CoefficientList[Series[1/(1-4*x-6*x^2-4*x^3-x^4),{x,0,23}],x] (* Stefano Spezia, Jul 09 2024 *)
Formula
a(n) = 4*a(n-1) + 6*a(n-2) + 4*a(n-3) + a(n-4), n=>4.
a(n) = Sum_{k>=0} (1/2)^(k+1) * binomial(4*k,n). - Seiichi Manyama, Aug 03 2024
Comments