cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A374617 a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix having 1 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.

Original entry on oeis.org

1, 1, 1, 2, 6, 21, 111, 710, 4968, 39879, 360952
Offset: 0

Views

Author

Stefano Spezia, Jul 14 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=CountDistinct[Table[Det[ToeplitzMatrix[Join[{1},Part[Permutations[Range[n-1]], i]]]], {i, (n -1)!}]]; Join[{1}, Array[a, 10]]

Formula

a(n) <= (n-1)! for n > 0.

A374619 a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix having 1 on the main diagonal and all the first n-1 primes off-diagonal.

Original entry on oeis.org

1, 1, 1, 2, 6, 22, 120, 717, 5039, 40312, 362874
Offset: 0

Views

Author

Stefano Spezia, Jul 14 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=CountDistinct[Table[Det[ToeplitzMatrix[Join[{1},Part[Permutations[Prime[Range[n-1]]], i]]]], {i, (n -1)!}]]; Join[{1}, Array[a, 10]]

Formula

a(n) <= (n-1)! for n > 0.

A374620 a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the first n-1 primes off-diagonal.

Original entry on oeis.org

1, 1, 1, 2, 6, 24, 120, 717, 5040, 40314, 362874
Offset: 0

Views

Author

Stefano Spezia, Jul 14 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=CountDistinct[Table[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Prime[Range[n-1]]], i]]]], {i, (n -1)!}]]; Join[{1}, Array[a, 10]]

Formula

a(n) <= (n-1)! for n > 0.

A374621 Expansion of e.g.f. 1 - x^4/24 - log(1 - x).

Original entry on oeis.org

1, 1, 1, 2, 5, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000, 25852016738884976640000
Offset: 0

Views

Author

Stefano Spezia, Jul 14 2024

Keywords

Comments

Conjectures (confirmed up to n = 10): (Start)
a(n) is the number of distinct values of the permanent of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
a(n) is the number of distinct values of the permanent of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the first n-1 primes off-diagonal. (End)

Crossrefs

Programs

  • Mathematica
    nmax=24; CoefficientList[Series[1-x^4/24-Log[1-x], {x,0,nmax}], x]*Range[0,nmax]!

Formula

a(0) = 1, a(4) = 5, and a(n) = (n-1)! for n > 0 and n <> 4.
a(n) = (n - 1)*a(n-1) for n > 5.
Showing 1-4 of 4 results.