A374617
a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix having 1 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 1, 1, 2, 6, 21, 111, 710, 4968, 39879, 360952
Offset: 0
-
a[n_]:=CountDistinct[Table[Det[ToeplitzMatrix[Join[{1},Part[Permutations[Range[n-1]], i]]]], {i, (n -1)!}]]; Join[{1}, Array[a, 10]]
A374618
a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 1, 1, 2, 6, 22, 111, 695, 4920, 39881, 360242
Offset: 0
-
a[n_]:=CountDistinct[Table[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]], i]]]], {i, (n -1)!}]]; Join[{1}, Array[a, 10]]
A374619
a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix having 1 on the main diagonal and all the first n-1 primes off-diagonal.
Original entry on oeis.org
1, 1, 1, 2, 6, 22, 120, 717, 5039, 40312, 362874
Offset: 0
-
a[n_]:=CountDistinct[Table[Det[ToeplitzMatrix[Join[{1},Part[Permutations[Prime[Range[n-1]]], i]]]], {i, (n -1)!}]]; Join[{1}, Array[a, 10]]
A374621
Expansion of e.g.f. 1 - x^4/24 - log(1 - x).
Original entry on oeis.org
1, 1, 1, 2, 5, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000, 25852016738884976640000
Offset: 0
-
nmax=24; CoefficientList[Series[1-x^4/24-Log[1-x], {x,0,nmax}], x]*Range[0,nmax]!
Showing 1-4 of 4 results.
Comments