cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374663 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1 / (k*a(k)) < 1.

Original entry on oeis.org

2, 2, 2, 4, 10, 201, 34458, 1212060151, 1305857607493406801, 1534737681943564047120326770001682121, 2141290683979549415450148346297540185977813099483710032048213090481251382
Offset: 1

Views

Author

Rémy Sigrist, Aug 04 2024

Keywords

Comments

The harmonic series, Sum_{k > 0} 1/k, diverges. We divide each of its terms in such a way as to have a series bounded by 1.

Examples

			The initial terms, alongside the corresponding sums, are:
  n  a(n)        Sum_{k=1..n} 1/(k*a(k))
  -  ----------  -----------------------------------------
  1           2  1/2
  2           2  3/4
  3           2  11/12
  4           4  47/48
  5          10  1199/1200
  6         201  241199/241200
  7       34458  9696481199/9696481200
  8  1212060151  11752718467440661199/11752718467440661200
...
The denominators are in A375516.
		

References

  • Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.

Crossrefs

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*a(n))) end:
    a:= proc(n) a(n):= 1+floor(1/((1-s(n-1))*n)) end:
    seq(a(n), n=1..11);  # Alois P. Heinz, Oct 18 2024
  • Mathematica
    s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*a[n])];
    a[n_] := 1 + Floor[1/((1 - s[n - 1])*n)];
    Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 09 2025, after Alois P. Heinz *)
  • PARI
    { t = 0; for (n = 1, 11, for (v = ceil(1/(n*(1-t))), oo, if (t + 1/(n*v) < 1, t += 1/(n*v); print1 (v", "); break;););); }
    
  • Python
    from itertools import count, islice
    from math import gcd
    def A374663_gen(): # generator of terms
        p, q = 0, 1
        for k in count(1):
            yield (m:=q//(k*(q-p))+1)
            p, q = p*k*m+q, k*m*q
            p //= (r:=gcd(p,q))
            q //= r
    A374663_list = list(islice(A374663_gen(),11)) # Chai Wah Wu, Aug 28 2024

Formula

The ratios a(n)^2/a(n+1) are very close to the values 2, 2, 1, 8/5, 1/2, 7/6, 48/49, 9/8, 10/9, 11/10, 24/11^2, 13/12, 56/13^2, ... So it seems that often (but not always), a(n+1) is very close to (n/(n+1))*a(n)^2. - N. J. A. Sloane, Sep 08 2024