A375516 a(n) is the denominator of Sum_{k = 1..n} 1 / (k*A374663(k)).
1, 2, 4, 12, 48, 1200, 241200, 9696481200, 11752718467440661200, 15347376819435640471203267700016821200, 23554197523775043569951631809272942045755944094320810352530343995293765200
Offset: 0
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..14
- Rémy Sigrist, Proof of theorem about A374983 and the present sequence, Aug 26 2024, revised Sep 01 2024.
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
Programs
-
Maple
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end: b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end: a:= n-> denom(s(n)): seq(a(n), n=0..10); # Alois P. Heinz, Oct 18 2024
-
Mathematica
s[n_] := s[n] = If[n == 0, 0, s[n-1] + 1/(n*b[n])]; b[n_] := b[n] = 1 + Floor[1/((1 - s[n-1])*n)]; a[n_] := Denominator[s[n]]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Dec 10 2024, after Alois P. Heinz *)
-
Python
from itertools import count, islice from math import gcd def A375516_gen(): # generator of terms p, q = 0, 1 for k in count(1): yield q m = q//(k*(q-p))+1 p, q = p*k*m+q, k*m*q p //= (r:=gcd(p,q)) q //= r A375516_list = list(islice(A375516_gen(),11)) # Chai Wah Wu, Aug 28 2024
Comments