A375522
a(n) is the denominator of Sum_{k = 1..n} 1 / (k*A375781(k)).
Original entry on oeis.org
1, 2, 6, 15, 105, 1155, 1336335, 892896284280, 398631887241408183843480, 19863422690705846097977473796903171171326157280, 14091270035344566960604487534521565339065390839583445590118556137472614250693240040301050080
Offset: 0
The first few fractions are 0/1, 1/2, 5/6, 14/15, 103/105, 1154/1155, 1336333/1336335, 892896284279/892896284280, ...
-
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(ithprime(n)*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*ithprime(n))) end:
a:= n-> denom(s(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 18 2024
-
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(Prime[n]*b[n])];
b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*Prime[n])];
a[n_] := Denominator[s[n]];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 22 2025, after Alois P. Heinz *)
-
from itertools import islice
from math import gcd
from sympy import nextprime
def A375522_gen(): # generator of terms
p, q, k = 0, 1, 1
while (k:=nextprime(k)):
m=q//(k*(q-p))+1
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p,q))
q //= r
yield q
A375522_list = list(islice(A375522_gen(),11)) # Chai Wah Wu, Aug 30 2024
A375521
a(n) is the numerator of Sum_{k = 1..n} 1 / (k*A375781(k)).
Original entry on oeis.org
0, 1, 5, 14, 103, 1154, 1336333, 892896284279, 398631887241408183843479, 19863422690705846097977473796903171171326157279, 14091270035344566960604487534521565339065390839583445590118556137472614250693240040301050079
Offset: 0
The first few fractions are 0/1, 1/2, 5/6, 14/15, 103/105, 1154/1155, 1336333/1336335, 892896284279/892896284280, ...
-
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(ithprime(n)*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*ithprime(n))) end:
a:= n-> numer(s(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 18 2024
-
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(Prime[n]*b[n])];
b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*Prime[n])];
a[n_] := Numerator[s[n]];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 22 2025, after Alois P. Heinz *)
-
from itertools import islice
from math import gcd
from sympy import nextprime
def A375521_gen(): # generator of terms
p, q, k = 0, 1, 1
while (k:=nextprime(k)):
m=q//(k*(q-p))+1
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p,q))
q //= r
yield p
A375521_list = list(islice(A375521_gen(),11)) # Chai Wah Wu, Aug 30 2024
A376048
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1, where {b(k)} = 3,1,4,1,5,... are the digits of Pi (cf. A000796).
Original entry on oeis.org
4, 5, 81, 1621, 13130101, 310319170452181, 21399552788917656689963823241, 1373822578697020375503379392874191898311737749943783762521
Offset: 1
- Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.
A376062
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1, where {b(k)} is the sequence {7/6, 5/4, 5/4, 5/4, ...}.
Original entry on oeis.org
2, 4, 13, 157, 24493, 599882557, 359859081592975693, 129498558604939936868397356895854557, 16769876680757063368089314196389622249367851612542961252860614401811693
Offset: 1
-
Join[{2}, RecurrenceTable[{a[n+1] == a[n]^2 - a[n] + 1, a[2] == 4}, a, {n, 2, 9}]] (* Amiram Eldar, Sep 15 2024 *)
A376051
a(n) is the denominator of the sum S(n) defined in A376050.
Original entry on oeis.org
2, 6, 15, 105, 1890, 1787940, 1598366509740, 170318366632160334167580, 4144049430320998104357181695998976956266032780, 903849772681252048573050443706467978048458261112444760582668531605732820714345840478376380
Offset: 1
The first few values of S(n) are 1/2, 5/6, 14/15, 103/105, 1889/1890, 1787939/1787940, 1598366509739/1598366509740, ... Note S(4) is exceptional, in that the numerator and denominator differ by 2 instead of 1.
A376052
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} 1/((2*k+1)*a(k)) < 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 6, 31, 1527, 3509710, 19634198420529, 670572652324570519822017836, 444183929825540926086588009989665668909119960123355423
Offset: 1
A376056
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} (2*k-1)/a(k) < 1.
Original entry on oeis.org
2, 7, 71, 6959, 62255215, 4736981006316791, 26518805245879857416837904442871, 811438882694890436523185183518581584358651922339197834228784351
Offset: 1
-
# Given a sequence b(1), b(2), b(3), ... of nonnegative real numbers, this program computes the first M terms of the lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... with the property that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1.
# For the present sequence we set b(k) = 2*k - 1.
b := Array(0..100,-1); a := Array(0..100,-1); S := Array(0..100,-1); d := Array(0..100,-1);
for k from 1 to 100 do b[k]:=2*k-1; od:
M:=8;
S[0] := 0; d[0] := 1;
for n from 1 to M do
a[n] := floor(b[n]/d[n-1])+1;
S[n] := S[n-1] + b[n]/a[n];
d[n] := 1 - S[n];
od:
La:=[seq(a[n],n=1..M)]; # the present sequence
Ls:=[seq(S[n],n=1..M)]; # the sums S(n)
Lsn:=[seq(numer(S[n]),n=1..M)];
Lsd:=[seq(denom(S[n]),n=1..M)]; # A376057
Lsd-Lsn; # As a check, by the above theorem, this should (and does) produce the all-1's sequence
# Some small changes to the program are needed if the starting sequence {b(n)} has offset 0, as for example in the case of the Fibonacci or Catalan numbers (see A376058-A376061).
A376057
a(n) is the denominator of the sum S(n) defined in A376056.
Original entry on oeis.org
1, 2, 14, 994, 6917246, 430634636937890, 2039908095836912108987531110990, 54095925512992695768212345567905438957243461489279855615252290
Offset: 0
The first few values of S(n) are 0/1, 1/2, 13/14, 993/994, 6917245/6917246, 430634636937889/430634636937890, ...
-
a:= proc(n) a(n):= `if`(n=0, 1, ((2*n-1)*a(n-1)+1)*a(n-1)) end:
seq(a(n), n=0..7); # Alois P. Heinz, Oct 18 2024
-
RecurrenceTable[{a[n+1] == (2*n+1)*a[n]^2 + a[n], a[0] == 1}, a, {n, 0, 7}] (* Amiram Eldar, Sep 15 2024 *)
A376058
Lexicographically earliest sequence of positive integers a(0), a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 0..n-1} Fibonacci(k)/a(k) < 1.
Original entry on oeis.org
1, 2, 3, 13, 235, 91651, 13439702641, 293516611480726842391, 139168617347514378219313352146196398680331, 31357558945249615124049146384908197437748687514518843725326663348294514909787525421
Offset: 0
A376061
a(n) is the denominator of the sum S(n) defined in A376060.
Original entry on oeis.org
2, 6, 78, 30498, 13021822554, 7121850230383271305026, 6695139092929353602428277531338786356808914258
Offset: 0
The first few values of S(n) are 1/2, 5/6, 77/78, 30497/30498, 13021822553/13021822554, ...
-
RecurrenceTable[{a[n+1] == CatalanNumber[n+1]*a[n]^2 + a[n], a[0] == 2}, a, {n, 0, 6}] (* Amiram Eldar, Sep 15 2024 *)
Showing 1-10 of 22 results.
Comments