A374663
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1 / (k*a(k)) < 1.
Original entry on oeis.org
2, 2, 2, 4, 10, 201, 34458, 1212060151, 1305857607493406801, 1534737681943564047120326770001682121, 2141290683979549415450148346297540185977813099483710032048213090481251382
Offset: 1
The initial terms, alongside the corresponding sums, are:
n a(n) Sum_{k=1..n} 1/(k*a(k))
- ---------- -----------------------------------------
1 2 1/2
2 2 3/4
3 2 11/12
4 4 47/48
5 10 1199/1200
6 201 241199/241200
7 34458 9696481199/9696481200
8 1212060151 11752718467440661199/11752718467440661200
...
The denominators are in A375516.
- Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.
-
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*a(n))) end:
a:= proc(n) a(n):= 1+floor(1/((1-s(n-1))*n)) end:
seq(a(n), n=1..11); # Alois P. Heinz, Oct 18 2024
-
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*a[n])];
a[n_] := 1 + Floor[1/((1 - s[n - 1])*n)];
Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 09 2025, after Alois P. Heinz *)
-
{ t = 0; for (n = 1, 11, for (v = ceil(1/(n*(1-t))), oo, if (t + 1/(n*v) < 1, t += 1/(n*v); print1 (v", "); break;););); }
-
from itertools import count, islice
from math import gcd
def A374663_gen(): # generator of terms
p, q = 0, 1
for k in count(1):
yield (m:=q//(k*(q-p))+1)
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p,q))
q //= r
A374663_list = list(islice(A374663_gen(),11)) # Chai Wah Wu, Aug 28 2024
A375516
a(n) is the denominator of Sum_{k = 1..n} 1 / (k*A374663(k)).
Original entry on oeis.org
1, 2, 4, 12, 48, 1200, 241200, 9696481200, 11752718467440661200, 15347376819435640471203267700016821200, 23554197523775043569951631809272942045755944094320810352530343995293765200
Offset: 0
- N. J. A. Sloane, Table of n, a(n) for n = 0..14
- Rémy Sigrist, Proof of theorem about A374983 and the present sequence, Aug 26 2024, revised Sep 01 2024.
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
-
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
a:= n-> denom(s(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 18 2024
-
s[n_] := s[n] = If[n == 0, 0, s[n-1] + 1/(n*b[n])];
b[n_] := b[n] = 1 + Floor[1/((1 - s[n-1])*n)];
a[n_] := Denominator[s[n]];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Dec 10 2024, after Alois P. Heinz *)
-
from itertools import count, islice
from math import gcd
def A375516_gen(): # generator of terms
p, q = 0, 1
for k in count(1):
yield q
m = q//(k*(q-p))+1
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p,q))
q //= r
A375516_list = list(islice(A375516_gen(),11)) # Chai Wah Wu, Aug 28 2024
A374983
a(n) is the numerator of Sum_{k = 1..n} 1 / (k*A374663(k)).
Original entry on oeis.org
0, 1, 3, 11, 47, 1199, 241199, 9696481199, 11752718467440661199, 15347376819435640471203267700016821199, 23554197523775043569951631809272942045755944094320810352530343995293765199
Offset: 0
For n = 3: A374663(1) = A374663(2) = A374663(3) = 2, 1/(1*2) + 1/(2*2) + 1/(3*2) = 11/12, so a(3) = 11.
- N. J. A. Sloane, Table of n, a(n) for n = 0..14
- Rémy Sigrist, Proof of Theorem, Aug 26 2024, revised Sep 01 2024.
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
-
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
a:= n-> numer(s(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 18 2024
-
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])];
b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)];
a[n_] := Numerator[s[n]];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 22 2025, after Alois P. Heinz *)
-
{ print1 (0); t = 0; for (n = 1, 10, for (v = c=ceil(1/(n*(1-t))), oo, if (t + 1/(n*v) < 1, t += 1/(n*v); print1 (", " numerator(t)); break;););); }
-
from itertools import count, islice
from math import gcd
def A374983_gen(): # generator of terms
p, q = 0, 1
for k in count(1):
yield p
m = q//(k*(q-p))+1
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p,q))
q //= r
A374983_list = list(islice(A374983_gen(),11)) # Chai Wah Wu, Aug 28 2024
Original entry on oeis.org
1, 2, 8, 36, 1152, 240000, 9696240000, 11752718457744180000, 15347376819435640459450549232576160000, 23554197523775043569951631809272942030408567274885169881327076295276944000
Offset: 0
-
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
a:= n-> denom(s(n+1))-denom(s(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 19 2024
-
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])];
b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)];
a[n_] := Denominator[s[n + 1]] - Denominator[s[n]];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 14 2025, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments