cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374722 Number of nonisomorphic spanning trees of the nC_5-snake with constant distance between cutpoints.

Original entry on oeis.org

1, 6, 24, 120, 570, 2850, 14100, 70500, 351750, 1758750, 8790000, 43950000, 219731250, 1098656250, 5493187500, 27465937500, 137329218750, 686646093750, 3433228125000, 17166140625000, 85830691406250, 429153457031250, 2145767226562500, 10728836132812500, 53644180371093750
Offset: 1

Views

Author

Christian Barrientos, Jul 17 2024

Keywords

Comments

a(n) is the number of spanning trees of the cyclic snake formed with n copies of the cycle on 5 vertices. A cyclic snake is a connected graph whose block-cutpoint is a path and all its n blocks are isomorphic to the cycle C_m.

Examples

			For n=2, a(2)=6 because there are 6 spanning trees of 2C_5-snake
__ __ __ __ __ __ __ __, __ __ __ __|__ __ __, __ __ __ \/__ __ __,
            __              __           __
__ __ __ __|__ __, __ __ __|__ __, __ __|__ __
                           |            |__
		

References

  • Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60 (2001), 85-96.

Crossrefs

Cf. A374721.

Programs

  • Mathematica
    Drop[CoefficientList[Series[x*(1 + x - 11*x^2 - 5*x^3)/((1 - 5*x)*(1 - 5*x^2)),{x,0,30}],x],1] (* Georg Fischer, Aug 09 2024 *)
  • PARI
    for(n=1, 30, print1(if(n==1,1,(3/2)*(3* 5^(n - 2) + 5^floor((n - 2)/2))),",")) \\ Georg Fischer, Aug 09 2024

Formula

a(n) = (3/2)*(3* 5^(n - 2) + 5^floor((n - 2)/2)) for n > 1.
From Stefano Spezia, Jul 23 2024: (Start)
G.f.: x*(1 + x - 11*x^2 - 5*x^3)/((1 - 5*x)*(1 - 5*x^2)).
E.g.f.: (24 + 10*x - 9*cosh(5*x) - 15*cosh(sqrt(5)*x) - 9*sinh(5*x) - 3*sqrt(5)*sinh(sqrt(5)*x))/50. (End)

Extensions

a(25) corrected by Georg Fischer, Aug 09 2024