cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374727 Number of n-color complete compositions of n.

Original entry on oeis.org

1, 1, 1, 1, 7, 13, 45, 91, 233, 477, 1079, 2205, 4709, 10299, 22393, 52005, 125055, 310373, 799677, 2096699, 5556681, 14806685, 39417431, 104570549, 276027337, 724183555, 1887993925, 4891368373, 12595644523, 32252683453, 82146468813, 208225916203, 525472131209
Offset: 1

Views

Author

John Tyler Rascoe, Jul 17 2024

Keywords

Comments

These are integer compositions whose set of parts covers an initial interval and contains k colors of each part k.

Examples

			a(6) = 13 counts: (1,1,1,1,1,1) and the 12 permutations of parts 1, 1, 2_a, and 2_b.
		

Crossrefs

Programs

  • PARI
    colr(x,y)={my(r=y-x+1, v=[x..y], z = vector(r*(r+(1+(x-1)*2))/2), k=1); for(i=1,#v,for(j=1,v[i],z[k]=v[i]; k++)); return(z)}
    C_x(s,N)={my(x='x+O('x^N), g=if(#s <1,1, sum(i=1,#s, C_x(s[^i],N) * x^(s[i]) )/(1-sum(i=1,#s, x^(s[i]))))); return(g)}
    B_x(N)={my(x='x+O('x^N), j=1, h=0, s=colr(1,j)); while(vecsum(s) <= N, h += C_x(s,N+1); j++;s=colr(1,j)); my(a = Vec(h)); vector(N, i, a[i])}
    B_x(25)