cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374772 Decimal expansion of the upper bound of the density of sphere packing in the Euclidean 3-space resulting from the dodecahedral conjecture.

Original entry on oeis.org

7, 5, 4, 6, 9, 7, 3, 9, 9, 3, 3, 7, 4, 0, 5, 8, 3, 0, 3, 9, 1, 6, 5, 2, 1, 0, 5, 9, 9, 0, 2, 2, 9, 3, 3, 1, 3, 4, 2, 4, 3, 2, 1, 9, 2, 1, 4, 5, 9, 4, 3, 4, 2, 8, 4, 7, 6, 5, 8, 3, 5, 9, 2, 0, 5, 6, 1, 5, 8, 6, 6, 4, 5, 0, 7, 3, 0, 3, 9, 0, 5, 3, 0, 3, 3, 2, 7, 4, 6, 8
Offset: 0

Views

Author

Paolo Xausa, Jul 19 2024

Keywords

Comments

See A374753 for more information on the dodecahedral conjecture.
Also isoperimetric quotient (see A381671 for definition) of a regular dodecahedron. - Paolo Xausa, May 19 2025

Examples

			0.7546973993374058303916521059902293313424321921459...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374755 (strong dodecahedral conjecture), A374771, A374837, A374838.

Programs

  • Mathematica
    First[RealDigits[Pi*Sqrt[5 + Sqrt[5]]/(15*Sqrt[10]*(Sqrt[5] - 2)), 10, 100]]
  • PARI
    Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals (4/3)*Pi/A374753 = 10*A019699/A374753.
Equals Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)).
Equals 4*Pi/A374755.
Equals 36*Pi*A102769^2/(A131595^3). - Paolo Xausa, May 19 2025

A374755 Decimal expansion of the surface area of a regular dodecahedron having unit inradius.

Original entry on oeis.org

1, 6, 6, 5, 0, 8, 7, 3, 0, 8, 5, 5, 4, 6, 5, 3, 0, 8, 0, 7, 2, 1, 1, 2, 9, 6, 3, 4, 0, 9, 8, 5, 5, 1, 7, 7, 2, 2, 2, 1, 2, 7, 9, 4, 6, 3, 8, 6, 4, 7, 4, 9, 6, 6, 0, 1, 3, 3, 5, 2, 6, 1, 5, 9, 0, 6, 1, 6, 5, 1, 0, 1, 2, 1, 9, 9, 9, 7, 3, 5, 7, 0, 9, 4, 4, 8, 8, 1, 6, 6
Offset: 2

Views

Author

Paolo Xausa, Jul 20 2024

Keywords

Comments

Bezdek's strong dodecahedral conjecture (proved by Hales, see links) states that, in any packing of unit spheres in the Euclidean 3-space, the surface area of every bounded Voronoi cell is at least this value.

Examples

			16.6508730855465308072112963409855177222127946386...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374772, A374837, A374838.

Programs

  • Mathematica
    First[RealDigits[30*Sqrt[130 - 58*Sqrt[5]], 10, 100]]

Formula

Equals 30*sqrt(130 - 58*sqrt(5)).
Equals 60*sqrt(3 - A001622)/A098317.
Equals 4*Pi/A374772.
Equals 3*A374753.
Minimal polynomial: x^4 - 234000*x^2 + 64800000. - Stefano Spezia, Sep 03 2025

A374837 Decimal expansion of Bezdek and Daróczy-Kiss's upper bound for the surface area density of a unit ball in any face cone of a Voronoi cell in an arbitrary packing of unit balls in the Euclidean 3-space.

Original entry on oeis.org

7, 7, 8, 3, 6, 8, 3, 8, 5, 1, 3, 7, 7, 7, 3, 9, 2, 2, 7, 9, 5, 7, 6, 7, 1, 6, 6, 6, 0, 5, 9, 4, 3, 5, 2, 0, 1, 9, 7, 1, 1, 6, 3, 1, 8, 6, 2, 8, 1, 1, 9, 1, 0, 4, 4, 8, 7, 3, 4, 0, 6, 0, 1, 2, 8, 8, 2, 4, 3, 1, 5, 9, 5, 5, 4, 4, 8, 8, 2, 3, 5, 8, 6, 0, 3, 5, 3, 3, 6, 8
Offset: 0

Views

Author

Paolo Xausa, Jul 21 2024

Keywords

Comments

See Theorem 1.1 in Bezdek and Daróczy-Kiss (2005).
See A374772 for an improved bound.

Examples

			0.7783683851377739227957671666059435201971163186281...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374755 (strong dodecahedral conjecture), A374772, A374838.

Programs

  • Mathematica
    First[RealDigits[(30*ArcCos[Sqrt[3]/2*Sin[Pi/5]] - 9*Pi)/(5*Tan[Pi/5]), 10, 100]]

Formula

Equals (30*arccos((sqrt(3)/2)*sin(Pi/5)) - 9*Pi)/(5*tan(Pi/5)).
Equals 4*Pi/A374838.
Showing 1-3 of 3 results.