cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A374753 Decimal expansion of the volume of a regular dodecahedron having unit inradius.

Original entry on oeis.org

5, 5, 5, 0, 2, 9, 1, 0, 2, 8, 5, 1, 5, 5, 1, 0, 2, 6, 9, 0, 7, 0, 4, 3, 2, 1, 1, 3, 6, 6, 1, 8, 3, 9, 2, 4, 0, 7, 3, 7, 5, 9, 8, 2, 1, 2, 8, 8, 2, 4, 9, 8, 8, 6, 7, 1, 1, 1, 7, 5, 3, 8, 6, 3, 5, 3, 8, 8, 3, 6, 7, 0, 7, 3, 3, 3, 2, 4, 5, 2, 3, 6, 4, 8, 2, 9, 3, 8, 8, 9
Offset: 1

Views

Author

Paolo Xausa, Jul 19 2024

Keywords

Comments

The dodecahedral conjecture (proved in 1988 by Thomas C. Hales and Sean McLaughlin, see links) states that, in any packing of unit spheres in the Euclidean 3-space, every Voronoi cell has volume at least equal to this value.

Examples

			5.55029102851551026907043211366183924073759821288...
		

Crossrefs

Cf. A019699, A374755 (strong dodecahedral conjecture), A374772 (density).

Programs

  • Mathematica
    First[RealDigits[10*Sqrt[130 - 58*Sqrt[5]], 10, 100]]

Formula

Equals (4/3)*Pi/A374772 = 10*A019699/A374772.
Equals 10*sqrt(130 - 58*sqrt(5)).
Equals A374755/3.

A381671 Decimal expansion of the isoperimetric quotient of a regular tetrahedron.

Original entry on oeis.org

3, 0, 2, 2, 9, 9, 8, 9, 4, 0, 3, 9, 0, 3, 6, 3, 0, 8, 4, 3, 2, 3, 4, 6, 3, 7, 6, 2, 7, 3, 6, 9, 2, 6, 2, 2, 0, 4, 7, 3, 4, 4, 3, 7, 4, 6, 8, 2, 1, 2, 3, 4, 2, 9, 2, 6, 1, 6, 4, 7, 4, 8, 9, 2, 3, 1, 3, 5, 3, 8, 6, 3, 5, 2, 1, 0, 5, 8, 9, 8, 0, 6, 1, 4, 0, 2, 0, 8, 3, 1
Offset: 0

Views

Author

Paolo Xausa, Mar 03 2025

Keywords

Comments

Polya (1954) defines the isoperimetric quotient of a solid as 36*Pi*V^2/(S^3), where V and S are the volume and surface area of the solid, respectively.
The isoperimetric quotient of a sphere is 1.

Examples

			0.30229989403903630843234637627369262204734437468212...
		

References

  • George Polya, Mathematics and Plausible Reasoning, Vol. 1: Induction and Analogy in Mathematics, Princeton University Press, Princeton, New Jersey, 1954. See pp. 188-189, exercise 43.

Crossrefs

Cf. A273633 (sphericity).
Cf. isoperimetric quotient of other Platonic solids: A019673 (cube), A073010 (octahedron), A374772 (dodecahedron), A381672 (icosahedron).

Programs

  • Mathematica
    First[RealDigits[Pi/(6*Sqrt[3]), 10, 100]]

Formula

Equals Pi/(6*sqrt(3)) = A019673/A002194.

A374755 Decimal expansion of the surface area of a regular dodecahedron having unit inradius.

Original entry on oeis.org

1, 6, 6, 5, 0, 8, 7, 3, 0, 8, 5, 5, 4, 6, 5, 3, 0, 8, 0, 7, 2, 1, 1, 2, 9, 6, 3, 4, 0, 9, 8, 5, 5, 1, 7, 7, 2, 2, 2, 1, 2, 7, 9, 4, 6, 3, 8, 6, 4, 7, 4, 9, 6, 6, 0, 1, 3, 3, 5, 2, 6, 1, 5, 9, 0, 6, 1, 6, 5, 1, 0, 1, 2, 1, 9, 9, 9, 7, 3, 5, 7, 0, 9, 4, 4, 8, 8, 1, 6, 6
Offset: 2

Views

Author

Paolo Xausa, Jul 20 2024

Keywords

Comments

Bezdek's strong dodecahedral conjecture (proved by Hales, see links) states that, in any packing of unit spheres in the Euclidean 3-space, the surface area of every bounded Voronoi cell is at least this value.

Examples

			16.6508730855465308072112963409855177222127946386...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374772, A374837, A374838.

Programs

  • Mathematica
    First[RealDigits[30*Sqrt[130 - 58*Sqrt[5]], 10, 100]]

Formula

Equals 30*sqrt(130 - 58*sqrt(5)).
Equals 60*sqrt(3 - A001622)/A098317.
Equals 4*Pi/A374772.
Equals 3*A374753.
Minimal polynomial: x^4 - 234000*x^2 + 64800000. - Stefano Spezia, Sep 03 2025

A374837 Decimal expansion of Bezdek and Daróczy-Kiss's upper bound for the surface area density of a unit ball in any face cone of a Voronoi cell in an arbitrary packing of unit balls in the Euclidean 3-space.

Original entry on oeis.org

7, 7, 8, 3, 6, 8, 3, 8, 5, 1, 3, 7, 7, 7, 3, 9, 2, 2, 7, 9, 5, 7, 6, 7, 1, 6, 6, 6, 0, 5, 9, 4, 3, 5, 2, 0, 1, 9, 7, 1, 1, 6, 3, 1, 8, 6, 2, 8, 1, 1, 9, 1, 0, 4, 4, 8, 7, 3, 4, 0, 6, 0, 1, 2, 8, 8, 2, 4, 3, 1, 5, 9, 5, 5, 4, 4, 8, 8, 2, 3, 5, 8, 6, 0, 3, 5, 3, 3, 6, 8
Offset: 0

Views

Author

Paolo Xausa, Jul 21 2024

Keywords

Comments

See Theorem 1.1 in Bezdek and Daróczy-Kiss (2005).
See A374772 for an improved bound.

Examples

			0.7783683851377739227957671666059435201971163186281...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374755 (strong dodecahedral conjecture), A374772, A374838.

Programs

  • Mathematica
    First[RealDigits[(30*ArcCos[Sqrt[3]/2*Sin[Pi/5]] - 9*Pi)/(5*Tan[Pi/5]), 10, 100]]

Formula

Equals (30*arccos((sqrt(3)/2)*sin(Pi/5)) - 9*Pi)/(5*tan(Pi/5)).
Equals 4*Pi/A374838.

A374771 Decimal expansion of the volume of the sphere inscribed in a regular dodecahedron with unit edge.

Original entry on oeis.org

5, 7, 8, 3, 3, 3, 5, 9, 5, 0, 3, 9, 6, 5, 7, 4, 1, 7, 8, 4, 2, 1, 8, 2, 3, 2, 1, 0, 4, 1, 0, 3, 3, 6, 7, 5, 5, 5, 3, 7, 2, 2, 3, 2, 4, 6, 2, 6, 0, 8, 2, 6, 1, 9, 4, 0, 4, 0, 5, 0, 7, 8, 2, 5, 5, 1, 7, 8, 7, 3, 1, 5, 3, 0, 0, 1, 0, 1, 6, 8, 2, 9, 8, 0, 7, 2, 3, 3, 6, 0
Offset: 1

Views

Author

Paolo Xausa, Jul 19 2024

Keywords

Examples

			5.78333595039657417842182321041033675553722324626...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi*Sqrt[1525 + 682*Sqrt[5]]/30, 10, 100]]

Formula

Equals (4/3)*Pi*A237603^3 = 10*A019699*A237603^3.
Equals (1/30)*Pi*sqrt(1525 + 682*sqrt(5)).
Equals (Pi/6)*A001622^6/((3 - A001622)^(3/2)).

A374838 Decimal expansion of Bezdek and Daróczy-Kiss's lower bound for the surface area of any Voronoi cell in an arbitrary packing of unit balls in the Euclidean 3-space.

Original entry on oeis.org

1, 6, 1, 4, 4, 5, 0, 2, 8, 5, 2, 7, 6, 5, 3, 7, 9, 8, 0, 6, 9, 3, 7, 6, 0, 2, 3, 2, 8, 0, 9, 2, 9, 3, 3, 5, 4, 3, 8, 6, 8, 9, 2, 2, 0, 0, 9, 7, 8, 0, 4, 4, 2, 5, 8, 4, 5, 7, 0, 1, 2, 1, 7, 8, 4, 4, 0, 6, 1, 3, 7, 1, 5, 9, 4, 4, 8, 8, 5, 0, 5, 6, 8, 4, 1, 9, 0, 5, 9, 2
Offset: 2

Views

Author

Paolo Xausa, Jul 21 2024

Keywords

Comments

See Theorem 1.1 in Bezdek and Daróczy-Kiss (2005).
See A374755 for an improved bound (the strong dodecahedral conjecture).

Examples

			16.144502852765379806937602328092933543868922009780...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374755 (strong dodecahedral conjecture), A374772, A374837.

Programs

  • Mathematica
    First[RealDigits[20*Pi*Tan[Pi/5]/(30*ArcCos[Sqrt[3]/2*Sin[Pi/5]] - 9*Pi), 10, 100]]

Formula

Equals 20*Pi*tan(Pi/5)/(30*arccos(sqrt(3)/2*sin(Pi/5)) - 9*Pi).
Equals 4*Pi/A374837.

A381672 Decimal expansion of the isoperimetric quotient of a regular icosahedron.

Original entry on oeis.org

8, 2, 8, 7, 9, 7, 7, 1, 9, 2, 5, 2, 0, 1, 2, 0, 2, 1, 5, 0, 0, 5, 8, 1, 0, 0, 3, 8, 1, 2, 9, 6, 3, 5, 7, 5, 8, 6, 1, 7, 8, 3, 0, 3, 0, 8, 7, 2, 3, 3, 8, 2, 6, 7, 7, 4, 6, 4, 0, 7, 0, 4, 6, 1, 9, 3, 7, 9, 8, 9, 9, 5, 0, 2, 1, 0, 8, 1, 9, 4, 0, 5, 9, 0, 0, 8, 8, 0, 5, 8
Offset: 0

Views

Author

Paolo Xausa, Mar 03 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, see A381671.

Examples

			0.8287977192520120215005810038129635758617830308723...
		

Crossrefs

Cf. A273637 (sphericity).
Cf. isoperimetric quotient of other Platonic solids: A019673 (cube), A073010 (octahedron), A374772 (dodecahedron), A381671 (tetrahedron).

Programs

  • Mathematica
    First[RealDigits[Pi*GoldenRatio^4/(15*Sqrt[3]), 10, 100]]

Formula

Equals Pi*phi^4/(15*sqrt(3)) = A000796*A374883/(15*A002194).

A374956 Decimal expansion of Muder's 1993 upper bound for the density of packing of unit spheres in the Euclidean 3-space.

Original entry on oeis.org

7, 7, 3, 0, 5, 5, 8, 9, 6, 5, 7, 6, 9, 0, 8, 8, 9, 0, 5, 5, 0, 2, 1, 7, 5, 5, 7, 0, 1, 5, 2, 9, 0, 4, 7, 3, 0, 8, 2, 6, 2, 4, 5, 1, 7, 5, 2, 1, 6, 2, 4, 9, 3, 4, 1, 8, 3, 0, 4, 3, 9, 6, 5, 6, 2, 4, 8, 8, 9, 2, 7, 5, 9, 6, 8, 6, 5, 0, 8, 8, 8, 0, 5, 0, 9, 1, 0, 5, 2, 5
Offset: 0

Views

Author

Paolo Xausa, Jul 25 2024

Keywords

Comments

See A374772 for an improved bound.

Examples

			0.77305589657690889055021755701529047308262451752162...
		

Crossrefs

Cf. A374772, A374837, A374955 (volume).

Programs

  • Mathematica
    Module[{beta, r, s},
      s[p_] := Pi - 5*ArcTan[Sqrt[(1 - 2*r^2)/(p*r^2)]];
      beta = 5*r*Sqrt[1 - 2*r^2]/(3*Sqrt[2]) + s[2]/6;
      r = SolveValues[4/13*Pi == 2*s[3] - Sqrt[8/3]*s[2] && r > 0, r, Reals];
      RealDigits[4*Pi/(39*beta), 10, 100][[1,1]]]

Formula

Equals 4*Pi/(39*beta), where beta = 5*r*sqrt(1-2*r^2)/(3*sqrt(2)) + (1/6)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))) and r is the positive solution to (4/13)*Pi = 2*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(3*r^2)))) - sqrt(8/3)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))). See Corollary in Muder (1993), p. 352.
Equals (4/3)*Pi/A374955.

A379732 Decimal expansion of 207/208.

Original entry on oeis.org

9, 9, 5, 1, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2
Offset: 0

Views

Author

Paolo Xausa, Dec 31 2024

Keywords

Comments

Conjectured densest packing of truncated tetrahedra.

Examples

			0.995192307692307692307692307692307692307692307692...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[207/208, 10, 100]]
Showing 1-9 of 9 results.