cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A093766 Decimal expansion of Pi/(2*sqrt(3)).

Original entry on oeis.org

9, 0, 6, 8, 9, 9, 6, 8, 2, 1, 1, 7, 1, 0, 8, 9, 2, 5, 2, 9, 7, 0, 3, 9, 1, 2, 8, 8, 2, 1, 0, 7, 7, 8, 6, 6, 1, 4, 2, 0, 3, 3, 1, 2, 4, 0, 4, 6, 3, 7, 0, 2, 8, 7, 7, 8, 4, 9, 4, 2, 4, 6, 7, 6, 9, 4, 0, 6, 1, 5, 9, 0, 5, 6, 3, 1, 7, 6, 9, 4, 1, 8, 4, 2, 0, 6, 2, 4, 9, 4, 1, 0, 6, 0, 3, 0, 0, 8, 4, 4, 2, 8
Offset: 0

Views

Author

Eric W. Weisstein, Apr 15 2004

Keywords

Comments

Density of densest packing of equal circles in two dimensions (achieved for example by the A2 lattice).
The number gives the areal coverage (90.68... percent) of the close hexagonal (densest) packing of circles in the plane. The hexagonal unit cell is a rhombus of side length 1 and height sqrt(3)/2; the area of the unit cell is sqrt(3)/2 and the four parts of circles add to an area of one circle of radius 1/2, which is Pi/4. - R. J. Mathar, Nov 22 2011
Ratio of surface area of a sphere to the regular octahedron whose edge equals the diameter of the sphere. - Omar E. Pol, Dec 09 2013

Examples

			0.906899682117108925297039128821077866142033124046370287784942...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 506.
  • L. B. W. Jolley, Summation of Series, Dover (1961), Eq. (84) on page 16.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 30.

Crossrefs

Programs

Formula

Equals (5/6)*(7/6)*(11/12)*(13/12)*(17/18)*(19/18)*(23/24)*(29/30)*(31/30)*..., where the numerators are primes > 3 and the denominators are the nearest multiples of 6.
Equals Sum_{n>=1} 1/A134667(n). [Jolley]
Equals Sum_{n>=0} (-1)^n/A124647(n). [Jolley eq. 273]
Equals A000796 / A010469. - Omar E. Pol, Dec 09 2013
Continued fraction expansion: 1 - 2/(18 + 12*3^2/(24 + 12*5^2/(32 + ... + 12*(2*n - 1)^2/((8*n + 8) + ... )))). See A254381 for a sketch proof. - Peter Bala, Feb 04 2015
From Peter Bala, Feb 16 2015: (Start)
Equals 4*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 5)).
Continued fraction: 1/(1 + 1^2/(4 + 5^2/(2 + 7^2/(4 + 11^2/(2 + ... + (6*n + 1)^2/(4 + (6*n + 5)^2/(2 + ... ))))))). (End)
The inverse is (2*sqrt(3))/Pi = Product_{n >= 1} 1 + (1 - 1/(4*n))/(4*n*(9*n^2 - 9*n + 2)) = (35/32) * (1287/1280) * (8075/8064) * (5635/5632) * (72819/72800) * ... = 1.102657790843585... - Dimitris Valianatos, Aug 31 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 3) dx.
Equals Integral_{x=0..oo} 1/(3*x^2 + 1) dx. (End)
Equals 1 + Sum_{k>=1} ( 1/(6*k+1) - 1/(6*k-1) ). - Sean A. Irvine, Jul 24 2021
For positive integer k, Pi/(2*sqrt(3)) = Sum_{n >= 0} (6*k + 4)/((6*n + 1)*(6*n + 6*k + 5)) - Sum_{n = 0..k-1} 1/(6*n + 5). - Peter Bala, Jul 10 2024
From Stefano Spezia, Jun 05 2025: (Start)
Equals Sum_{k>=0} (-1)^k/((k + 1)*(3*k + 1)).
Equals Integral_{x=0..oo} 1/(x^4 + x^2 + 1) dx.
Equals Integral_{x=0..oo} x^2/(x^4 + x^2 + 1) dx. (End)
Equals sqrt(A072691) = 3*A381671. - Hugo Pfoertner, Jun 05 2025

Extensions

Entry revised by N. J. A. Sloane, Feb 10 2013

A374772 Decimal expansion of the upper bound of the density of sphere packing in the Euclidean 3-space resulting from the dodecahedral conjecture.

Original entry on oeis.org

7, 5, 4, 6, 9, 7, 3, 9, 9, 3, 3, 7, 4, 0, 5, 8, 3, 0, 3, 9, 1, 6, 5, 2, 1, 0, 5, 9, 9, 0, 2, 2, 9, 3, 3, 1, 3, 4, 2, 4, 3, 2, 1, 9, 2, 1, 4, 5, 9, 4, 3, 4, 2, 8, 4, 7, 6, 5, 8, 3, 5, 9, 2, 0, 5, 6, 1, 5, 8, 6, 6, 4, 5, 0, 7, 3, 0, 3, 9, 0, 5, 3, 0, 3, 3, 2, 7, 4, 6, 8
Offset: 0

Views

Author

Paolo Xausa, Jul 19 2024

Keywords

Comments

See A374753 for more information on the dodecahedral conjecture.
Also isoperimetric quotient (see A381671 for definition) of a regular dodecahedron. - Paolo Xausa, May 19 2025

Examples

			0.7546973993374058303916521059902293313424321921459...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374755 (strong dodecahedral conjecture), A374771, A374837, A374838.

Programs

  • Mathematica
    First[RealDigits[Pi*Sqrt[5 + Sqrt[5]]/(15*Sqrt[10]*(Sqrt[5] - 2)), 10, 100]]
  • PARI
    Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals (4/3)*Pi/A374753 = 10*A019699/A374753.
Equals Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)).
Equals 4*Pi/A374755.
Equals 36*Pi*A102769^2/(A131595^3). - Paolo Xausa, May 19 2025

A306771 Numbers m such that m = i + j = i * k and phi(m) = phi(i) + phi(j) = phi(i) * phi(k) for some i, j, k, where phi is the Euler totient function A000010.

Original entry on oeis.org

3, 15, 21, 33, 39, 51, 57, 69, 75, 87, 93, 105, 111, 123, 129, 141, 147, 159, 165, 177, 183, 195, 201, 213, 219, 231, 237, 249, 255, 267, 273, 285, 291, 303, 309, 321, 327, 339, 345, 357, 363, 375, 381, 393, 399, 411, 417, 429, 435, 447, 453, 465, 471, 483, 489
Offset: 1

Views

Author

Michel Lagneau, Mar 09 2019

Keywords

Comments

The 55 terms given in the data section are consistent with a definition "numbers congruent to 3 or 15 mod 18". - Peter Munn, May 12 2020
The observation above is true for the first 10^4 terms. - Amiram Eldar, Dec 08 2020
The observation above is true for every term; see link. - Flávio V. Fernandes, Apr 18 2022
A001748 \ {6, 9} is a subsequence because, for p prime >= 5, 3 * p = p + 2p = p * 3 and phi(3p) = phi(p) + phi(2p) = phi(p) * phi(3) = 2 * (p-1). - Bernard Schott, May 13 2022

Examples

			33 is in the sequence because:
phi(33) = phi(11 + 22) = phi(11) + phi(22) = 10 + 10 = 20, and
phi(33) = phi(3 * 11) = phi(3) * phi(11) = 2 * 10 = 20.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 500 do:
    ii:=0:
      for i from 1 to trunc(n/2) while(ii=0) do:
       if phi(i)+ phi(n-i)= phi(n) and n/i = floor(n/i)
          and phi(i)*phi(n/i)=phi(n)
          then
          ii:=1:printf(`%d, `,n):
          else
       fi:
      od:
    od:
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {3, 15, 21}, 100] (* Paolo Xausa, Mar 07 2025 *)
  • PARI
    isok(m) = {my(phim = eulerphi(m)); for (i=1, m\2, if ((eulerphi(i) + eulerphi(m-i) == phim) && !frac(m/i) && (eulerphi(m/i)*eulerphi(i) == phim), return (1)););} \\ Michel Marcus, Mar 09 2019

Formula

From Chai Wah Wu, Mar 07 2025: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
G.f.: x*(3*x^2 + 12*x + 3)/((x - 1)^2*(x + 1)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) (A381671). - Amiram Eldar, Mar 08 2025

Extensions

Incorrect comment deleted by Peter Munn, May 12 2020
Name corrected by Flávio V. Fernandes, Aug 26 2021 and Peter Munn, Sep 03 2021

A381672 Decimal expansion of the isoperimetric quotient of a regular icosahedron.

Original entry on oeis.org

8, 2, 8, 7, 9, 7, 7, 1, 9, 2, 5, 2, 0, 1, 2, 0, 2, 1, 5, 0, 0, 5, 8, 1, 0, 0, 3, 8, 1, 2, 9, 6, 3, 5, 7, 5, 8, 6, 1, 7, 8, 3, 0, 3, 0, 8, 7, 2, 3, 3, 8, 2, 6, 7, 7, 4, 6, 4, 0, 7, 0, 4, 6, 1, 9, 3, 7, 9, 8, 9, 9, 5, 0, 2, 1, 0, 8, 1, 9, 4, 0, 5, 9, 0, 0, 8, 8, 0, 5, 8
Offset: 0

Views

Author

Paolo Xausa, Mar 03 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, see A381671.

Examples

			0.8287977192520120215005810038129635758617830308723...
		

Crossrefs

Cf. A273637 (sphericity).
Cf. isoperimetric quotient of other Platonic solids: A019673 (cube), A073010 (octahedron), A374772 (dodecahedron), A381671 (tetrahedron).

Programs

  • Mathematica
    First[RealDigits[Pi*GoldenRatio^4/(15*Sqrt[3]), 10, 100]]

Formula

Equals Pi*phi^4/(15*sqrt(3)) = A000796*A374883/(15*A002194).

A384683 Decimal expansion of Sum_{i >= 1} 1/(3*i-1) - 1/(3*i).

Original entry on oeis.org

2, 4, 7, 0, 0, 6, 2, 5, 0, 2, 9, 5, 0, 1, 8, 5, 3, 7, 2, 6, 5, 2, 7, 6, 2, 4, 2, 1, 8, 7, 5, 7, 0, 2, 3, 0, 2, 7, 6, 4, 0, 0, 9, 0, 4, 2, 2, 9, 2, 5, 1, 2, 9, 6, 6, 0, 5, 6, 9, 9, 6, 7, 7, 5, 8, 7, 3, 9, 3, 2, 8, 3, 0, 8, 8, 2, 4, 5, 5, 0, 2, 8, 2, 2, 7, 8, 7, 0, 4, 6, 0, 3, 8, 1, 8, 9, 3, 4, 9, 5, 8, 4, 6, 1, 4, 6, 1, 2, 1, 1, 9, 4, 6, 7, 8, 4
Offset: 0

Views

Author

Jason Bard, Jun 06 2025

Keywords

Comments

Generalization of infinite sum generating A002162 (natural logarithm of 2). That sum is Sum_{i >= 1} 1/(k*i-1) - 1/(k*i), where k = 2. Here, we set k = 3.

Examples

			0.24700625029501853726527624218757023027640090422925...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/2 * Log[3] - (Sqrt[3]/18) * Pi, 10, 1000][[1]]
  • PARI
    log(3)/2 - Pi/(6*sqrt(3)) \\ Amiram Eldar, Jun 07 2025

Formula

Equals (1/2) * log(3) - sqrt(3) * Pi / 18.
Equals Sum_{i>=1} 1/A152743(i).
Equals A294514/3. - Hugo Pfoertner, Jun 07 2025
Showing 1-5 of 5 results.