A352397 Numerators of partial sums of the Madhava series for Pi/(2*sqrt(3)) = A093766.
1, 8, 41, 856, 23147, 254512, 3309041, 29780368, 168757087, 28857376792, 259716622073, 5973480691064, 89602217802389, 7257779456082784, 210475605899597261, 6524743766713282016, 19574231315333822573, 6524743770186190936, 2172739675639135323463, 19554657080276529569192
Offset: 0
Examples
The partial sums begin: 1/1, 8/9, 41/45, 856/945, 23147/25515, 254512/280665, 3309041/3648645, 29780368/32837805, 168757087/186080895, ... For n = 100 the partial sum is 0.9068996821171089252970391288210778661420331240463726... compared to 0.9068996821171089252970391288210778661420331240463702...(the first 53 digits coincide).
References
- L. B. W. Jolley, Summation of Series, Dover (1961), eq. (273), pp. 16 and 17.
- Ian Stewart, Grössen der Mathematik, Rowohlt Tachenbuch Verlag, Nr. 63394, 2020, p. 74. [English Original: Significant Figures. Lives and Works of Traiblazing Mathematicians, Profile Books, London, 2017]
Programs
-
Mathematica
Numerator @ Accumulate @ Table[(-1)^j/((2*j + 1)*3^j), {j, 0, 20}] (* Amiram Eldar, Apr 08 2022 *)
-
PARI
a(n) = numerator(sum(j=0, n, (-1)^j/((2*j+1)*3^j))); \\ Michel Marcus, Apr 08 2022
Formula
a(n) = numerator(Sum_{j=0..n} (-1)^j/((2*j+1)*3^j)), for n >= 0.
Comments