cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374772 Decimal expansion of the upper bound of the density of sphere packing in the Euclidean 3-space resulting from the dodecahedral conjecture.

Original entry on oeis.org

7, 5, 4, 6, 9, 7, 3, 9, 9, 3, 3, 7, 4, 0, 5, 8, 3, 0, 3, 9, 1, 6, 5, 2, 1, 0, 5, 9, 9, 0, 2, 2, 9, 3, 3, 1, 3, 4, 2, 4, 3, 2, 1, 9, 2, 1, 4, 5, 9, 4, 3, 4, 2, 8, 4, 7, 6, 5, 8, 3, 5, 9, 2, 0, 5, 6, 1, 5, 8, 6, 6, 4, 5, 0, 7, 3, 0, 3, 9, 0, 5, 3, 0, 3, 3, 2, 7, 4, 6, 8
Offset: 0

Views

Author

Paolo Xausa, Jul 19 2024

Keywords

Comments

See A374753 for more information on the dodecahedral conjecture.
Also isoperimetric quotient (see A381671 for definition) of a regular dodecahedron. - Paolo Xausa, May 19 2025

Examples

			0.7546973993374058303916521059902293313424321921459...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374755 (strong dodecahedral conjecture), A374771, A374837, A374838.

Programs

  • Mathematica
    First[RealDigits[Pi*Sqrt[5 + Sqrt[5]]/(15*Sqrt[10]*(Sqrt[5] - 2)), 10, 100]]
  • PARI
    Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals (4/3)*Pi/A374753 = 10*A019699/A374753.
Equals Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)).
Equals 4*Pi/A374755.
Equals 36*Pi*A102769^2/(A131595^3). - Paolo Xausa, May 19 2025

A237603 Decimal expansion of the inscribed sphere radius in a regular dodecahedron with unit edge.

Original entry on oeis.org

1, 1, 1, 3, 5, 1, 6, 3, 6, 4, 4, 1, 1, 6, 0, 6, 7, 3, 5, 1, 9, 4, 3, 7, 5, 0, 3, 9, 4, 8, 6, 9, 4, 9, 3, 7, 5, 8, 8, 3, 1, 5, 0, 3, 6, 9, 8, 8, 6, 4, 8, 7, 7, 7, 2, 6, 0, 1, 2, 0, 8, 0, 0, 3, 9, 9, 8, 4, 8, 9, 6, 2, 0, 5, 6, 5, 5, 6, 5, 9, 7, 5, 8, 8
Offset: 1

Views

Author

Stanislav Sykora, Feb 25 2014

Keywords

Comments

Equals phi^2/(2*xi), where phi is the golden ratio (A001622, 2*cos(Pi/5)) and xi is its associate (A182007, 2*sin(Pi/5)).

Examples

			1.1135163644116067351943750394869493758831503698864877726012080...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. A001622, A182007, A019863, A019863, A019952, A374771 (sphere volume).
Cf. Platonic solids inradii: A020781 (tetrahedron), A020763 (octahedron), A179294 (icosahedron).

Programs

  • Mathematica
    RealDigits[ Cos[Pi/5]^2 / Sin[Pi/5], 10, 111][[1]] (* Or *)
    RealDigits[ Sqrt[5/8 + 11/(8 Sqrt[5])], 10, 111][[1]] (* Robert G. Wilson v, Feb 28 2014 *)
  • PARI
    sqrt(250+110*sqrt(5))/20

Formula

Equals A001622^2/A182007 = (cos(Pi/5))^2/sin(Pi/5) = A019863^2/A019845 = cos(Pi/5)*cotan(Pi/5) = A019863*A019952 = 1/sin(Pi/5) - sin(Pi/5) = A019845^(-1) - A019845 = sqrt(250+110*sqrt(5))/20.

A374955 Decimal expansion of Muder's 1993 lower bound for the volume of any Voronoi polyhedron defined by a packing of unit spheres in the Euclidean 3-space.

Original entry on oeis.org

5, 4, 1, 8, 4, 8, 2, 9, 6, 2, 6, 6, 0, 7, 2, 3, 2, 9, 4, 1, 4, 4, 5, 7, 2, 5, 2, 0, 9, 3, 2, 4, 6, 4, 5, 2, 7, 8, 1, 8, 3, 0, 9, 5, 5, 8, 9, 9, 8, 2, 2, 5, 7, 2, 5, 6, 3, 7, 3, 1, 6, 4, 4, 7, 5, 3, 5, 9, 9, 8, 3, 8, 9, 9, 2, 1, 6, 9, 9, 6, 0, 3, 8, 8, 7, 9, 8, 6, 2, 8
Offset: 1

Views

Author

Paolo Xausa, Jul 25 2024

Keywords

Comments

See A374753 (the dodecahedral conjecture) for an improved bound.

Examples

			5.4184829626607232941445725209324645278183095589982...
		

Crossrefs

Cf. A374771, A374753, A374956 (density).

Programs

  • Mathematica
    Module[{beta, r, s},
      s[p_] := Pi - 5*ArcTan[Sqrt[(1 - 2*r^2)/(p*r^2)]];
      beta = 5*r*Sqrt[1 - 2*r^2]/(3*Sqrt[2]) + s[2]/6;
      r = SolveValues[4/13*Pi == 2*s[3] - Sqrt[8/3]*s[2] && r > 0, r, Reals];
      RealDigits[13*beta, 10, 100][[1,1]]]

Formula

Equals 13*beta, where beta = 5*r*sqrt(1-2*r^2)/(3*sqrt(2)) + (1/6)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))) and r is the positive solution to (4/13)*Pi = 2*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(3*r^2)))) - sqrt(8/3)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))). See Theorem in Muder (1993), p. 352.
Equals (4/3)*Pi/A374956.
Showing 1-3 of 3 results.